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Introduction

In this thesis we are studying solutions u(x, t) of the one-dimensional scalar
Kuramoto-Sivashinsky equation

Up + Ul + Usey + Usxxx = 0, (KS)

which arises from a number of physical phenomena. It models two components
reaction diffusion systems as studied by Kuramoto and Tsuzuki [KT76], the
propagation of flame fronts as investigated by Sivashinsky [Siv80], the flow of a
viscous liquid film on a vertical wall as analysed by Sivashinsky and Michelson
[SM80] and crystal growth as discussed by Menke [Men00].

Behaviour of Solutions
Disregarding the non-linear term (KS) turns into the linearized Kuramoto-
Sivashinsky equation

Up + Uxx + Ugxxx = 0,
which under Fourier transformation becomes
iy = (0? — w1,

implying that small frequencies w < 1 grow while high frequencies v > 1
get damped. The non-linear term however shifts energy from small to high
frequencies, as can be seen in the study of Burgers’ equation

Ur + uuy =0, (BE)

which produces discontinuities from smooth initial data. This is demonstrated
in Figure 1.1, where the evolution of sinusoidal initial data is plotted.

Together these two conflicting properties result in spatio-temporal chaotic
behaviour of solutions of (KS), that can be seen in Figure 1.2.
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Figure 1.1: Sinusoidal initial data leads to discontinuities for solutions of Burgers’
equation.

Figure 1.2: Typical chaotic behaviour of solutions of the Kuramoto-Sivashinsky equa-
tion.
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Bounds for Solutions

In all the previously mentioned applications it is justified to assume spatially
periodic solutions. The dynamics are particular interesting for large domains, so
it is natural to investigate how solutions scale with respect to growing domains.
For instance, in case of L-periodic solutions u, one is interested in bounds for

1 L
Z./o u?(x, t) dx

and the space-time energy density
O B
—/ —/ u?(x,t) dx dt
TJo LJo

Nicolaenko, Scheurer and Temam [NST85] proved

the energy density

as L — oo.

lim sup [[u(-, £)||;> = O(L%), (1.1)

t—o0

where || - ||;2 is the standard, non-averaged L? norm defined by || f ”1242 = /OL f2dx,
for odd initial data through the background flow method similar to the approach
outlined in Section 1.1 and carried out in Section 2.1 of Chapter 2. Collet,
Eckmann, Epstein and Stubbe [Col+93] showed that the oddness assumption
can be dropped and improved the estimate to

tim sup (- 1) 2 = O(L%). (1.2)

Viewing (KS) as a perturbation of (BE) as outlined in Section 1.2 and carried out
in Section 2.2 of Chapter 2 Giacomelli and Otto [GO05] sharpened the bound to

lim sup J|u(- 1)z = o(L%). (1.3)

t—oo

Bronski and Gambill [BG06] proved the slightly weaker estimate

lim sup [[u(-, £)[|;2 = O(L%). (1.4)

t—oo
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They also used the background flow method, which we will describe in Section 1.1
and prove in Section 2.1 of Chapter 2, and showed that (1.4) is the optimal
bound for this approach as outlined in Section 1.1. This technique also yields
applications to a wider range of equations such as the destabilized Kuramoto-
Sivashinsky equation

1 2
U + E(u ), + tex + Uxxxx = VU,

where y > 0 and may be applicable to the two-dimensional Kuramoto-Sivashinsky
equation

U+ Vul + Au+ A%u =0, VXxu=0,

see [BG06, p.2037 £.]. Otto [Ott09] improved the previous bounds (1.1) - (1.4) to

lim l/Tlqua 1u(x, 1))? d dt—o(ln%+L) (1.5)
supT LI, | “u(x, x dt = )

T—

for all % < a < 2, where |0x|%u is the a-fractional derivative (see Definition A.1
in the Appendix) of u and the notation O(ln%Jr L) stats that the bound O(In® L)

holds for every ¢ > 2, which in this context yields

1 T
limsup?‘/ (- 1)l dt = O(LeY).
0

T—o0

The most recent result,

: 1 T 1 t a 2 £

lim sup — - (|0%]|%u(x, 1)) dx dt = O(lm L)
T—oo T 0 L 0

for all % < a £ 2, established by Goldman, Josien and Otto [GJO15] improves

the initial result (1.5) of [Ott09] but does not yield a better bound for the time

average of ||u]|zz.

However numerical simulations, such as by Wittenberg and Holmes [WH99]
and Goluskin and Fantuzzi [GF19], suggest that the behaviour of solutions for
domains that exceed a minimum length is independent of the domain size. This
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means that

limsup ||u(-, t)|[r~> = O(1),

t—o0

which would translate to

lim sup [|u(-, £)||;> = O(L?)

t—o00

and

1 [T ;
limsupf'/ (- t)ll2 dt = O(L2).
0

T—

With respect to the space and space-time average this would yield

L
limsupl/ (10x]%u(x, 1))? dx = O(1)
0

t—o00 L

and

, 1 Tt )
hmsup—/ —/ (|9x|%u(x, 1)) dx dt = O(1)
TJy LJo

T—

for all @ > 0 as conjectured by Otto [Ott09].

Notation.
We write

e f < g if there exists a universal constant ¢ > 0 such that f < cg.

. /f dx if the domain of integration matches with the periodicity of the
domain, i.e. for L-periodic f

/f(x) dx:‘/sHLf(x) dx

for any s € R. Similarly for Lebesgue, Hilbert and Sobolev norms

Ifllee = 1 fllesserys N1 llme = 1 lmr(ssenys Nfllwee = Ifllwee (s ser)-

Chapter 1
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e ¢ for a generic constant that may differ in consecutive estimates.
e D(Q) for the space C°(L2) of smooth functions with compact support in .

e A* for the dual space of A.

1.1 The Background Flow Method

In Section 2.1 of Chapter 2 we will follow Bronski and Gambill [BG06] in deriving
bounds for solutions u(x, t) of the initial boundary value problem

Up + Ully + Usx + Uxxxx = 0, (KS)
u(x—Lt) =u(x+L,1), (PCaL)

u(0,t) =0, (BCo)

u(x,0) = up(x) (IC)

for all x € R and t > 0. The initial condition is chosen to match the periodicity,
the boundary condition, to be locally square-integrable and have zero mean, i.e.

uy(x — L) =ug(x+ L),

uo(0) =0,
uy(x) dx =0,
- uy € L*(-L,L)

for all x € R.

For this we will construct a 2L periodic function ¢, with zero mean (see
Theorem 2.7 for the construction and Figure 2.2 for a plot of ¢,) and ||@||gz < cL?
(see Corollary 2.8) such that

1
/ e —ud + peut dx 2 1 / ut, +u® dx (1.6)

holds for every 2L periodic u € C*[-L, L] with u(0) = 0, which implies for the
operator K = Oyxxx + 0xx + ¢ that the form

(u, Ku) = / u,zcx - ufc + qoxuz (1.7)
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is coercive, i.e. there exists a constant Ay > 0 such that
(u, Ku) = dollullf. (1.8)

Linearly rescaling solutions #(x, t) = u(2x,t) = u(x, t) of (KS), (PC,) and the
potential according to ¢(x) = éqo(a?), Lemma 2.2 and, after establishing the
regularity requirements, the coercivity result yield the Lyapunov function

d
cE/(a—sgb)zdfcs —<a,1r<a>+/@;+¢§;J2 dx
< ollill, + / 7+ 3. d%. (1.9)

Gronwall Inequality (see Proposition A.10 in the Appendix) implies that the ball
B,(0) C L? is an exponentially attracting set for i, as

A
dist(ii(-, t), B-(0)) < e~ *liio]|p,

where its radius can be bounded by r < ¢||¢||g2. Finally in Corollary 2.9 this
results in the estimate

lim sup ||ull;z = O(L?).

t—o00

Remark on the Optimality of Bounds for this Method
In [NST85], [Col+93] and [Go094] the constructed 2L-periodic function ¢, is
given by

px(x) = YL 4 () = YL 4 LG (L)

with constants y,c1,c; > 0, where G(x) € C? is compactly supported on an
interval independent of L and therefore q(x) € C2(~L,L) for¢; < 1 and L
sufficiently large. In [NST85, Equation (2.13b)] ¢, is defined via a Fourier series
such that c; = 2 and ¢; = 1, while in [Col+93, Equation (3.1)] it is chosen similarly
implying c¢; = % and ¢; = % Defining g(x) as a mollification of

{CLZ(LX)Z for |x| <€

0 for |x| > €

Section 1.1
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implies that g fulfills the requirements [Goo94, Equations (2.6)-(2.10)] with
€ = ¢L™!, such that the exponents for the function defined in [Goo94, Equation
(2.3)] are also given by ¢c; =2 and ¢; = 1.

Setting u(x) = L2 sin(kLﬂ), where k = [i] the form becomes

(u, Ku) = % / sinz(kLLx)(L_‘}(kﬂ)4 — L7 %(km)* + yL 1 4 q(x)) dx

1 k 3
< Z/sinz(%)(—l—é+yﬂ:2‘”1+q(x) dx.

Ifc, —c; — 1 < 0then yL2™“~! — 0 as L — oo and since ¢, has zero average
also q(x) — 0 implying that there exists some L such that (u, Ku) < 0.

Rescaling u according to ui(y, t) = (L x,t) = u(x, t) we get

L
(u, Ku) = / uix - ufc + (pxu2
-L

Ll*et
- [ )l sl
Let _Li*er YY\ L Y\ Let Let

—cy- Y
+yLea 1u(a)dy

Li*e
— L301 [LHCl a?/y(y) _ L_2C1ai/y +ch—4clqa2 + YLCz—Scl—lﬁz dy.
Regarding the term L°2~%“1Gui%, the potential is called strong if ¢, — 4c; > 0, weak
if ¢o — 4¢y < 0 and critical if ¢; = 4¢;. The functions constructed in [NST85],
[Col+93] and [Goo94] are all weak potentials. Since ¢, € C? has zero mean and
Y > 0 there exists a neighbourhood where ¢ < 0. Let & be compactly supported
in this neighbourhood, then a strong potential would imply

L1+C1
(u, Kuy = L / a2, (y) — L7200, + L4 ga? + yLe 713 dy

Ll+cl
< =L O(L*) + O(L%) + O (L2207
<0

for some L > 0 and therefore contradict the coercivity requirement.




The Background Flow Method Section 1.1

Calculating

2 2
ol = lloxxllz:
L

= [ (¢'(x)%dx

d 2
= L% / (—cj(Lclx)) dx
Le1xesupp q dx

= [ / (§'(L°x)) dx
Le1xesupp q

= [Pt / (§'(w)’du
uesupp q

— L26‘2+C10
implies the lower bound |||z = Le*7 such that the optimal potential min-
imizes ¢y + %‘ under the constraints ¢, < 4c¢; and ¢; > ¢ + 1. This minimum
is achieved by ¢; = % and ¢y = %, which coincides with the potential we will
construct implying that it yields the optimal bound for this method.

Remark on the Initial Conditions

In most applications, such as the flame propagation in [Siv80], the chemical
reaction diffusion behaviour in [KT76] and the crystal growth in [Men00], the
Kuramoto-Sivashinsky equation is derived from a quantity h satisfying an equa-
tion of type

1
ht+§hi+hxx+hmmx=0.

From this (KS) can be obtained by taking the derivative in space and setting
u = hy. If hy is also periodic, then u has zero mean for all times since

L

dt J o

L L L
/ u(x,t) dx = / Uy dx = / (ho)y dx =0.
-L -L -L

1
u(x,t)dx = / 5(”2)x F Ugy + Uygny dX =0

and therefore
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In [NST85] and [Col+93, Chapter 2] the constructed potential requires odd
solutions. This requirement was removed in [Col+93, Chapters 4 and 5], where
an arbitrary periodic zero average function u was split into

u(x) = u(0) + Ueven (x) + toda (x)

with even ueyen such that eyen(0) = 0 and odd uogg. For teven (0) an estimate
similar to (1.6) was found and the potential was shifted by a function of time as
@(x + b(t)) resulting in an estimate similar to (1.9). The bounds presented here
only require u(0, t) = 0 such that the outlined approach works for odd solutions
and can therefore also be generalized to 2L-periodic, locally square-integrable
initial data with zero mean.

1.2 Considering Kuramoto-Sivashinsky as a
Perturbation of Burgers’ Equation

Based on the work of Giacomelli and Otto [GO05] we will derive bounds for the
solution u(x, t) of the initial boundary value problem

Up + Ully + Uy + Usexxx = 0, (KS)
u(x,t) =u(x +Lt), (PCy)
u(x,0) = up(x) 1C)

for all x € R and t > 0. The initial condition is chosen to match the periodicity
condition, to be locally square-integrable and have zero mean, i.e.

uo(x) = up(x + L),

L
/ up(x) dx =0,
0

uo € L*(0,L) (1.10)

for all x € R.
Under the rescaling Lii(%, t) = u(LX,t) = u(x,t) the Kuramoto-Sivashinsky
equation (KS) itself becomes

u; +aig + ﬁu;c,; + Eu;c,e,;;( =0
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and using (KS) one gets

2
1 1 1 1 1 1
(—uz) + (—u3) - Z(u)zc)xx + (—uz) =-—u - (—u + uxx) < —uf
2 J, 3/, 2 e 4 2 4
for which the rescaling implies

1 1 2 1/(1 1
22| w(20d) - 2(@d), (a2 <ok
2 )y \3 J; L OLA\2 0 i 4

For L — oo this yields (see Theorem 2.16) that the rescaled solution of (KS)
distributionally solves the Burgers’ equation

U; +4dz =0 (BE)
and the entropy condition
1 1 1
02| +|=2®| < -dt (EC;2)
27 ), 37 ), "4
Conservation laws
w+ f(u)y =0 (1.11)

such as (KS) with f(u) = 3u? + uy + ey or (BE) with f(u) = u? are strongly
related to their corresponding Hamilton-Jacobi equations

h; + f(hy) = 0. (1.12)
In order to see how one derives (1.12) from (1.11) we write the conservation law
-0
via the space-time curl ( a x) as
t
0=u+ f(u)x

() ()

= curl(_fu(u)).

Section 1.2
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So the vector field ( ) is curl-free and therefore conservative. Using

u
—f(w)

Helmbholtz decomposition there exists a potential h such that

(7:) vh= (—flzm)’

which implies that h solves the Hamilton-Jacobi equation

he = =f(w) = —f (hx).

Deriving the Hamilton-Jacobi equation with respect to space and setting u = hy
one regains the corresponding conservation law (1.11).

Using this relation De Lellis, Otto and Westdickenberg showed in [DOW04,
Thoerem 2.4] that if @ solves (BE) and (EC,:), where the right-hand side could
even be replaced by a measure 1 with

1 .
lim ~4(B, (+,1)) = 0 (1.13)

for all x, ¢, then the associated function hisa viscosity solution (see Definition 1.2)
of the corresponding Hamilton-Jacobi equation

~ 1.,
hf+5h}%:0.

This is carried out in Theorem 2.19, where we show that A is a viscosity subsolu-
tion by mollification and the rather technical argument to prove that his also a
viscosity supersolution is based on estimates for the average of functions around
the required minimum condition.

In return [DOW04, Corollary 2.5] yields that # is an entropy solution (see
Definition 1.1) of @; + 4l = 0 so that 4 solves

U; + dilg = 0, (BE)

1 1
—a%| +|=a®| <o, (ECo)
27 ), \3 ),

implying that the right-hand side of (EC,:) is negligible. The argument here is
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that since £ is a viscosity solution, # can only have decreasing jumps, which
implies (ECy) as shown in Corollary 2.20.

For smooth, periodic solutions # of (BE) the energy would be preserved since

d : 1
E/azdfc:/ﬁafd;e“l”—/ﬁ?a,edaez—5/(a3)£d32=o,

but in our case i rather has Lfoc—regularity and fulfills (BE) and (ECy) in D*,
which implies that energy is dissipated and one finds the bound

~ Cc
/az(ﬁ, f) dx < = (1.14)

as carried out in Lemma 2.21. Translating this estimate back to the original

solution we get
2 3 1
u“(x,t) dx < cL 1+t_2

via contradiction in Corollary 2.22 resulting in (see Corollary 2.25)

lim sup [[u(-, £)|l = o(L%), (1.15)

t—oo

the bound claimed in (1.3).

» Definition 1.1 (Convex Entropy-Entropy Flux Pair, Entropy Solution).
For Q c R?, f € W®(R)

loc

. 1,q€ Whl)coo(lR) is a convex entropy-entropy flux pair if
1. n is convex,
2. ¢’ = f'n’ almost everywhere.

e Q€ Llloc(Q) is an entropy solution of 4; + f(i); = 0 if
L a;+ f(d); =0,
2. n(@); +q(@)z < 0

hold in D* for every convex entropy-entropy flux pair. <

Section 1.2
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Remark on the Definition of Entropy Solutions
Based on [Eva98, p.604] suppose that i is smooth, then 4; + f(#); = 0 and

n(@); + q(d)z = n'(@)d; + q'(D)ils
=n' (W) (& + ' (D))
=n' (@) (& + f(@)z)
=0.

In physical applications r(i) often donates the negative entropy, while q(i) is
the entropy flux, giving them the name entropy-entropy flux pair. Let Q* be a
spatial domain in Q, then the entropy —# in this domain evolves as

d
S paz= | —pdz
dt Jox X /Qx i

:/ gz dx
Ox

a q‘agf’

implying the entropy of the domain changes according to the flow on the bound-
ary. Since for non-smooth solutions the inequality yields that the change of
entropy in the domain can not be smaller than the flow on the boundary this
states that the entropy of a closed system can only increase and therefore agrees
with the second law of thermodynamics.

> Definition 1.2 (Viscosity Solution).
Let Q c R?. h € C(Q) is called

« a viscosity subsolution of fz; +f(fzx) = 0 if for all £ € C*(£2) the following
holds:

- Ifh- & has a local maximum at a point (%, t) € Q, then

(D) + f(&(x1) <0

« a viscosity supersolution of fz; + f(fl,g) = 0 if for all & € C*(Q) the
following holds:
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- Ifh- ¢ has a local minimum at a point (%,7) € , then
&% 1) + f(&(% D) 2 0.

« a viscosity solution of lAzl: + f(ﬁx) = 0 if it is a viscosity sub- and superso-
lution of h; + f(hz) = 0. <

Remark on the Definition of Viscosity Solutions

The name viscosity solution seems misleading since there is no viscosity term in
the definition, but it arises from the method of vanishing viscosity as stated in
[Eva98, ch. 10.1].

Instead of looking at solutions h of
hi+ f(hs) = 0
one considers e > 0 and looks at solutions € of
hS + f(hS) — ehs; =0, (1.16)

which are smooth since the viscosity term hS ; has a regularizing effect as can be

seen by Fourier analysis. Because of compactness results one gets that if h— £
has a maximum in (%, £) then so does h® — & in (%, t.) — (%, ). This yields

fl;(fe: fe) = gﬁ(fea fe):
fl;(ﬁe: fe) = &3(Xe, fe) (1.17)

and
—hSe (Refe) 2 —Eee(Re o) (1.18)

such that

. s e (17 2o s f s
& (e, te) + f(Ex(Res te)) = hf (Xes te) +f(h3>(xe, te))
ULV ehe (%eic)
8)

(1.1 o
< e'ffcy%(xate)~

Section 1.2
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Now letting e — 0 we get, with (X.,%) — (x,t) and since ¢ is smooth, the
definition of a viscosity subsolution. Similarly one gets the supersolution through
reversed inequality signs.

Remark on the Different Periodicity Lengths

As stated earlier we are interested in the scaling of solution with respect to the
order of the underlying domain size and not what the constants for the bounds
are. Therefore the difference coming from linear scaling of the periodicity
condition such as 2L in (PCyy) instead of L in (PCy) or the 4L-periodicity of @ in
Lemma 2.2 is irrelevant for these bounds.



2 Derivation of the Bounds

2.1 Using Background Flow Method

Based on [BG06] in this Section we carry out the approach outlined in Section 1.1
of Chapter 1. In Section 2.1.1 we justify why the solution can be bounded by the
potential if the coercivity result holds. In Section 2.1.2 we construct the potential
and in Section 2.1.3 we get the actual bound.

2.1.1 Conditions for an Attracting Region

First we find a condition for which B, (0), the ball of radius r around the origin
in L2, exponentially attracts functions @ € L?.

» Lemma 2.1.
Let it = 4(-,t) € L?[-L,L] and ¢ = ¢(x) € L?[-L, L] satisfy

d . . .
lli= g1, < ~Aollal, + P* (21)
for some constant 4y > 0 and P independent of ¢, then

A
dist(@i(- 1), By(0)) < e~ %! |ldio|lpz,

where r = /2||(ﬁ||i2 + % +2||@|l;2 and B,(0) donates the L?-ball around 0 with

radius r. <
Proof.

The triangular inequality and Cauchy inequality (see Proposition A.3 in the
Appendix) imply

~ a2 ~ ~ 2 (A9 ~ 12 ~ 112
Aollt = ¢ll7> < Ao(llallrz +[I@ll2)” < 2Aollall;, + 240l (2.2)

17
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such that
d 21 @2 Ay . 5
allu olZ, < —dollall?, +P* < —Ellu—wllfz+7lo||<0||fz+P2-

Gronwall inequality (see Proposition A.10 in the Appendix) yields
R 7% () I P B Lorsag _
li—glZ < ez{mm—w;+/°dﬁz”@mm@+pﬂdﬂ
0

A
=fffw0¢mz (%wmﬁwﬁ&z—Q)

2p?

< e Pt |ig — oIz, + 209117, + -
0

A
Using a? + b* < a2 + 2ab +b2 = (a+b)forab > 0witha=e 7"|ip— ¢l

andb:,/2||<p|| 2P e get

. oy . 2pP?
&~ @llrz < e fldo — lIe +\/2||<p||fz -
0

_Aog . . . 2p?
<e gl + 9llz + 1 [2019112, + —
LN
[ 2P2
such that for r; = ||@|[r2 + 2||(p||L2 + 5=
L oy
li — @llz < e |ldgllp2 + 11,
A
dist(i, By, (¢)) < e 4 *ldo|lr2 (2.3)

and since by triangular inequality By, (¢) C B,(0) for r = r1 + ||@]lr2 = 2]|@]|2 +
1/2||(p|| 2P \e arrive at
dist(#, B, (0)) = inf dist(ﬁ, )

< 1nf dist(a,
e o) (&)

18
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— dist(@ By, (§))

(2.3) Ao,
< et ol

concluding the proof. ]

Now we set this @ to be a rescaling of u in order to eliminate the constants
and match the form described in Equation (1.7).

» Lemma 2.2.
Let u(-,t) € H? solve (KS), (PC,.) and rescale it according to

X = 2x,

i(x,t) = u(2x,1t),

then
1d % 2L 2L
- (i — 8¢)% dx < / Uz — i, — pru° dx + / 8¢ + 64¢%. dx
16dt J 5 —2L —2L
holds for all ¢ Hser[—ZL, 2L] with zero mean. <
Proof.
We set

o0 =55 33)

to match the spatial scaling of u. Because of the periodicity, integrating by parts

yields
L 1 rL
/ wu, dx = = / (u3)x dx =0,
. 3/,

L 1 rt 1 rL
/ Quu, dx = 2 / (p(uz)x dx = —5/ Qxu® dx (2.4)
-L -L -L

and therefore

1d

L
1ol =/ (u— p)ur dx
2 dt L2(-L,L) L t

Section 2.1
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L

KS

(=) / (u - (p)(_uux — Uxx — uxxxx) dx
—-L

L
2
= / —U Uy — Ulxy — Ulxxxx T QUUx + QUxx + QUxxxx dx
-L

L

(2.4) 1 2 d

= “UUyxx — Ulxxxx — E(qu t QUxx + QUxxxx AX
—-L

L
1
= / uyzc - uyzcx - wauz — Qxlix + Pxxlixx dX. (2.5)
Applying Cauchy inequality (see Proposition A.3 in the Appendix) with a; = —¢y,
by = uy and a; = Qxx, by = Uy yields

1d ,
5%”” - (p”LZ(_L’L)

@5 [* 9 2 1 2
= Uy = Upx — 5(»03(” — PxUx + QxxUxx dx
-L

a3 L 1 1 1 1 1
< / u,zc - u,zcx - —qoxuz + Eclq),zc + —u,zc + —c2<p,zcx + —uix dx

L 2 201 2 2C2
L 11, 1 2 1 2, 1 5 1 4
= — — - — o+ = = dx. (2.6
'[L (1+ C1)ux+(2C2 1)uxx zqo u +201(px+202(pxx x. (2.6)
The substitution
X = px,
(B, 1) = u(x,b),
¢(fx) = yo(x)
implies
1 d/ﬁL(N 1 ~)2 ~
—— u(x) — —@(x)] dx
2pdt J_p nt
1d [t 1 2
=—— i Y, d
it [ (30 = S| ax

20
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— 1d 2
- 5%”” - (P”LZ(—L,L)

(2.6>/L e M (L) L
— |u — —1uy, — —pxu
—L 2cq * 2co xx Z(Px

1 1
+ Eclq))zc + §C2¢)2cx dx

IA

L
_ / (1+2icl)a§<ﬁx>+ (% - 1)aix<ﬁx) - ziya)x(ﬂx)a%ﬁx)

L

1 . 1
+ T}/zclq))zc(ﬂx) + Tyzczfﬁix(ﬂx) dx
AL IR 1 3~2 (= 1o oo
= L+ — (%) + | — = 1| fug (X) = —px(2)u (%)
-BL 2¢q 2¢y 2y
1 "2 1 “2 AN g
+ T}/zclﬂ(p;(X) + ?CZ,B:s )%c;c(x) dx
so that taking ¢; = %, c;=1,f=2andy= % we arrive at

1d [ , 2L
J D X 2 72 512 ~2 ~2 g~
1di . (1 —8¢)°dx < -[zL 4uz — i — 4QzU” + 3297 + 2560, dX.

Combining the previous results we can now state that if there exists a potential
¢ such that the coercivity result claimed in (1.8) holds, then the solution tends
towards the ball B, (0) with r < ||¢||g> and therefore can be estimated by this
norm.

» Lemma 2.3.
Let u(-,t) € H? solve (KS), (PC;;) and X and @ be given by

X = 2x,

i(x,t) = u(2x,1t).

If there exists a function ¢ € ngr[—ZL, 2L] with zero mean such that

2L
L) w2 TS -2
/ Uge — Uy + @zu” dx > Aollall;, (2.7)
—2L

Section 2.1
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Chapter 2 Derivation of the Bounds

holds for some Ay > 0 independent of L, then there exists a constant ¢ = ¢(4¢) > 0,
which is also independent of L, with

lim sup |lull;2(-r,17 < cll@llmz[-2120]-

t—o00

Proof.
Lemma 2.2 implies

d ri 2L 2L
~ 2 - -2 ~2 2 g 2 2 -
a‘/_ZL(u—Sqo) dx < —16‘/_2L Ul — Uy + @zt dx+16‘/_2L 8¢5 + 64¢5 . dx

(2.7)

27) 112 2 2
< -16 OlluHLz + 128”§0x”Lz + 1024”(Pxx”L2

such that Lemma 2.1 with L = 2L, Ay = 16Ag, ¢ = 8¢, P? = 128||(,o,;||iZ +
1024/l gzz|?, yields

dist(a(-, 1), B,(0)) < ™ ldig|l e, (2.8)

IA

where B, (0) is the ball of radius

16
r= \/128||<p||§2 + 7 (sl + llpsell2,) + 16l

in L?[-2L,2L] around 0. r is comparable to ||¢||52, i.e. there exist constants
c1, ¢2 > 0 such that

cillellezi—ar2r) < 7 < c2ll@llaz-2r,21)- (2.9)

L L 1 [
/ u?(x,t) dx = / a%(2x,t) dx = - / a%(%,t) dx
-L -L 2 J21

we get the desired inequality

Since

. 1. .
lim sup [[u(-, t)|lz2[-r,1] = 3 lim sup ||a(-, t)|lr2[-2r.21

t—o0 t—o0
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IA

1 : .
7 lim Sup(geanrf;O)(llu(u t) = Ellp2 + ||§||L2))

t—00

IA

1 1
5r+§nmsup( inf ||a(-,t>—§||Lz)

t—oo \§€B(0)

< %r + % lim sup(dist(a(-, ), B/ (0)))

t—o00
(2.8) 1 1 .
< —r+ - limsup e ¢ |4 ||
2 t—o00

1

=-r
2

(2.9)

9) ¢o
< EH‘P“HZ[—ZL,ZL]'

2.1.2 Construction of the Potential

Next we construct the 2L-periodic potential function ¢ such that the coercivity
condition (1.8) holds for all 4 € C3[-L, L] with @(0) = 0.

While technically, in order for Inequality (2.7) to hold, the construction would
have to be done on [-2L, 2L] we will define it on [—L, L] to omit unnecessary
constants.

» Lemma 2.4.
Ifu € C*[—a,a] withu(0) =0andv(y) = &;), then

al a
[a Euzy(y) dy > [a vi dy

andv € C?[—a,a]. <

Proof.
u € C*[-a,a] and u(0) = 0 imply v € C?>[-a, a], since

Yo%) d Yy’ (yA) dA
u(yy)zfo u;x) x_ y”;y) =/01u'<ya>am,

Section 2.1

23



Chapter 2 Derivation of the Bounds

and uyy = Yo,y + 20,. Integration by parts yields

a a a
/ Yo vy dy = —/ vz+yvyvyy dy+yv12/
—a _

a —a

= —/_ v‘: + Yo yUyy dy + a(vf/(a) +v2y(—a))

a
a
> —‘/_ vi+yvyvyy dy (2.10)

such that

Now we construct a piecewise constant function Q which can be arbitrary

4

. . I . L3
negative for small neighbourhoods of 0 while still leaving the form f s 202+
-L32°9Y

Q(y)v? dy non-negative for allv € H! [—L%, L%].

> Lemma 2.5.
Let the piecewise constant function Q be defined by

—qo for0 <[yl <4,
Qy)=1q1  for§ <yl <a,
0 fora < |y|,

where a, qo, g1 > 0 satisfy

qo0

4
—_— a< L3,
1-a2qy’

qoa2 <1, q1 >

24



Using Background Flow Method

then
L% 1 aq
/ -2 + Q(yw? dy > / 02 +Q(y)w?dy >0 (2.11)
32y a2
holds for all v € H'[-L3, L3]. <
Proof.

By definition of Q the first estimate in (2.11) is trivial. For the second estimate it
suffices to show

@1
/0 Evj +Q(yw?dy >0 (2.12)

for allv € H! [—L%, L%] since the negative part follows from Q being even and
setting 0(y) = v(—y).
Forv € Hl[—L%,L%], Y, Yz € [—L%,L%] and y; < y; one gets

Y2 1
2 _ 2 2
S =

a2 1 )
- yz_y1||vy||Ll[y1,y2]

1 (/ Y2 p )2
2 vy dy
Y2 —Y1\Jy, Y

_ (v(y2) - U(yl))2
Y2 — U .

(2.13)

The Sobolev embedding (see Proposition A.7 in the Appendix) also holds in the
special case n = p = 1 such that v is continuous and there exist points yy = 0,
y1 € [0,5] and y; € [5,a] with

v(yo) =vo =v(0),
v(y1) =v; = max lo(y)l,

yel0,5]

v(y2) =v2 = min [v(y)].
ye[§.a]

y; and y; are not necessary unique. In that case they can be chosen arbitrary in

Section 2.1
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the set of points satisfying the maximum/minimum condition. These definitions
yield

“ 2d — % Zd “ 2d
/OQ(y)v y /0 Q(y) y+/g Q(y)v° dy

a

2 a
:—qO/ v? dy+q1/ v? dy
0 a

—qovia  qvia

N

= + 2.14
5 5 (2.14)
and by the uncertainty estimate (2.13)
a
1 9 ] ) Y2 1 ,
—v; dy > / -v;, dy +/ —v% dy
/O 2°Y 0 29 ” 2°Y
(2;3) (v1 —v9)®  (v2—vy)?
- 24 2(y2 — y1)
2 2
v -V vy —V
> ( 1 0) + ( 2 1) . (215)
a 2a
Combining the potential and kinetic estimates gives
a 5 . 2 2 2 2
1, g, 210219 (vg —vg)”  (v2—v1)”  —qovia  qivya
vy, + v d > + + + .
/0 2 Y Q(y)” dy a 2a 2 2
(2.16)

Writing vy, v1, v, as a vector

Vo
U= 251
U2
and defining the quadratic matrix
1 1
“ 3 _“aq °
|1 S5 _ 0 _
A= a 2a . 2 L Z%q
1
0 2a 2a + 2
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one gets
2 2 2 2 2
vy — VgV vV 3v aqov v v v, aqu
UTAU=O 01_01+_1_ q01_12_12 q10,
a a 2a 2 2a 2a  2a 2
2 2 2 2
vy -V Uy — U —qovia via
:(1 0)+(2 1)+CI01+CI12
a 2a 2 2
2160 91, )
< ‘/0 Evy+Q(y)v dy. (2.17)
This quadratic form is positive definite since the principle minors of A, given by
1
1) _
det(g) = -,
1 -1 1(1
det( al 3 aaqo) = —(— — qo),
2 -2/ 2\&
1 1
d 4 3 _ag 01 _ 1 2
et~z s~ "2 |7z (Cwra(l-dq))
o -1 1 Jaq| 4a
2a 2a 2

are positive by assumption. Therefore the left-hand side of (2.17) is non negative
for allv € H! [—L%, L3], showing (2.12) and therefore concluding the proof. m

The assumptions on a, gy and g; are physically justified in the sense that
we are investigating the asymptotic behaviour Where L grows, meaning the
constant @ will be smaller than L for L — co. qo < -z sets a minimum of the
potential in comparison to the width of the domain, which would otherwise
lead to a potential valley resulting in a bounded state. The condition q; > —25
characterizing a minimum on the positive part of the potential, sets a minimal

bound of 2 2-aq) " the mean of Q therefore requiring a non-strictly negative
potentlal.

Clearly for positive a one always finds positive gy and g; satisfying these
conditions.

Now we smoothen the previously defined function Q and through dividing
by y* we emphasize the negative part of Q such that the average of this new
function can be made arbitrarily small while not changing the positivity of the
previous form.

1_a2q0 s
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27



Chapter 2

28

Derivation of the Bounds

» Lemma 2.6.
Let go and g, be defined as in Lemma 2.5. For every ¢ > 0 there exists a function
Q, bounded by —qo < Q < ¢y, such that

1. §= Q;;” € C®[-L3,L3],
2. [Gdy<-c,
L% ~ 4 4
3. /L% %vzy +Qu? > 0forallv € H[-L3,L3].
- <
Proof.

Let Q be defined as in Lemma 2.5 and g € C° as

e_(?+(y*1>2) fory € (0, 1),
fory ¢ (0,1).

9(y) =

Setting

[ g(s) ds
[l g(s) ds

gives a non decreasing C* function with f(y) = 0 for y < 0 and f(y) = 1 for
y > 1. Via f we can construct a smooth version of Q by

fly) =

~qof (3) for [y| € [0,6),
40 for [yl € [5.4 - 5),
y—5+6 a a
o Jraet @ an () forlyl e [$-69),
Qy) = a
q1 for |y| € [£,a),
qlf(5+(;—y) for |y| € [a,a + ),
0 for |y| € [a+ 8, ),
where
a
o< — 2.18
<2 (2.19)
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in order for Q to be well-defined. O € Ccr, 0(0) =0 implies g = % € C° with
§(0) = 0 and since 0 < f < 1yields —gy < Q < ¢y one gets

%—51 a+51
i(y) dy < 2| - / —dy+ / —d
‘/qu Y 90 s /2 y+qi ass 2 Y

) (1 1 ) ) g +25
=l s -7 = |t
5 5-9 (5—5)(a+5)
(218) 2 8
< _SCIO+_(q0+q1)
a

such that for fixed a the mean of ¢ can be made arbitrary negative by choosing
¢ sufficiently small, which proves part 2. For sufficiently small § one has (—(a +
d),a+0d) C (—Lg, L%) since a is strictly smaller than L3, which together with
Q=0for|y| > a+5and Q > Q yields

4
L3 a+d a
12 N2 12 A,.2 l2 2(2'11)
[§50y+Qv _[ 509+QU > : Evy+Qv > 0

(a+d) a
by Lemma 2.5 proving part 3. [

We now define q as a rescaling of ¢ and construct the final potential through
ox = q(x) — {q), where (-) is the average on [—L, L] in order for its derivative to
have zero mean.

» Theorem 2.7.
There exists a 2L-periodic function ¢, with zero mean such that

L 1t 1
2 2 2 2 2 2
/ Uy — Uy + Qxu” dx > 4_1/ Up, +u”dx > A—1||u||L2
-L -L

holds for every 2L-periodic u € C*[~L, L] with u(0) = 0. <

Proof.
Let g and Q be defined by Lemma 2.6 with ¢ = % such that

4
’ 3

L
/ , Gdy<-e=-. (2.19)
L3

Section 2.1
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2L3

Figure 2.1: The function ¢ constructed in Lemma 2.6 that, except for its periodicity, is

independent of L.
Then part 3 of Lemma 2.6 yields
for every v € H'[~L3,L3]. Define the rescaling

ﬁ(L%x) = u(x),
y = L%x,

which implies % € C3[—L%,L%] with %(0) = 0. By Lemma 2.4 v(y) :

H'[-L3,L3] and

ol

L3 1
vz dy < /L4 Eﬁiy(y) dy
—-L3

L
/ !
L3

30
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ﬁy)e

y
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such that for
g(x) = L3G(L7x)

one gets

Il
h
|\a
=
,4;
Q
o
~~~
o
N
+
=Y
~~~
S
e
St
A
o
N
Q.
<

Lq
= / ‘—Luix +qu® dx. (2.23)
Defining
Px(x) = q(x) = {q),
where

1 L~ 1 1 L%~ (219) 3
Hawan=; [ away 'S -3 e

1 [t 1
<Q>=i‘[ Q(x)dx—g ¥

is the mean value of g on [-L, L], yields

(2.23) 1
0 < / ul +qut dx
L

L
=/ L2 4 (gx+ (g dx

L4
L

(221) fLq 3
< / —ui + ((px - —)u2 dx. (2.25)
L4 4

Section 2.1
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Figure 2.2: The function ¢, constructed in Theorem 2.7.

Partial integration, the periodicity of u and Cauchy inequality (see Proposi-
tion A.3 in the Appendix) imply

L L L L
(A3) 1 1
/ u dx = —/ Uty dx < = / u? dx + = / ul, dx (2.26)
-L -L 2J-L 2J-L

and therefore

L , L
(2.26) 1 1
/ (U2, — ul + peu®)dx > / —ul + (gox - —)uz dx
L L2 2
1
2

Since the potential is only defined up to a constant we can set ¢(0) = 0 such
3
that ||¢||z2 can be bounded by cLz.
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» Corollary 2.8.
For the periodic function ¢ constructed in Theorem 2.7 there exists a constant
¢ > 0 such that

ol < cL? (2.27)

holds. <

Proof.
Cauchy inequality (see Proposition A.3 in the Appendix) gives

(@) — (@) = () — 24 + (@) < 2@ +@?)  (228)

such that via Jensen inequality (see Proposition A.4 in the Appendix)

L
locler = | (0G0 - (@

(2.28) L, Liq pL 2
< 2/ q“(x) dx+2/ (i/ q(y) dy) dx
-L -L -L
(A4) L L L
< 2/ g (x) dx+2/ %/ q*(y) dy dx
-L -L -L
L
=4 / q*(x) dx. (2.29)
-L

4
3

By definition g(x) = L%Q(L%x), where g € C° [—L%, L3] does not depend on L,

yielding

(2.29) L
lolrny < 4 [ Fds
-L

L
=4L3/ G (Lix) dx

L
/ , (L5 dA
—L3
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A
o
»

and similarly
L
loeslery = [ G0 d

8 L 1
L3/ G2 (L3x) dx

-L

L, 2
/(q’(LSx)) dx
-L

r
:L3/ A

L
< cld.

w3

L

¢ is only defined up to a constant, so let ¢(0) = 0 such that

o) = [ guds

- [Ca - as
0
4 x i 1 L
=L3 '/0 q(L3s)ds + ix[L q(s) ds
Lix 1 1 L 1
:L/ q(y) dy+—L3x/ q(L3s) ds
0 2 L

L%x 1 L%
L[ awdysgx [ qmar
0 —_

L3
q is independent of L and compactly supported implying

4
3

1\ ¥
llollze SL(1+§)/ gl dy
—L3

1 ~
~ifieg) [ anay
supp(q)

<cL,

34
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which in return yields

L
[ /L 0% (x) dx < 2L||p||% < cL®.

2.1.3 Bound for the Kuramoto-Sivashinsky Equation

By [Tem97, p.143 and Theorem II1.3.1] the solution u of the initial boundary
value problem (KS), (PC,y), (BCy), (IC) has regularity u(-,t) € H* for all times
t > 0. Therefore Sobolev embedding (see Proposition A.7 in the Appendix) yields
u(-,t) € C*[-L,L].

Using the potential function constructed in Section 2.1.2 we can now apply
the argument stated in Section 2.1.1 and derive bounds for the solution of the
Kuramoto-Sivashinsky equation.

» Corollary 2.9 (Energy Bound).
Let u solve (KS), (PC,y), (BCy), (IC), then there exists a universal constant ¢ such
that

lim sup [|ullp2(-r1) < cL?.
t—o00 ’

Proof.
By Theorem 2.7 there exists a 2L-periodic function ¢, such that

L
- - T
/~ iy, — tiy + 5t dx > < lallf,
i 5
holds for every 0 # @ € C3[-L, L] with u(0) = 0 and 2L-periodicity. Setting
i(x,t) = u(2x,t) and L = 2L in order to match the scaling in Lemma 2.3, then

for Ay = % this implies

limsup ||u|lzzj-r,r] < cill@llaz{-20,21]
t—o0

Section 2.1

35



Chapter 2 Derivation of the Bounds

and by Corollary 2.8

) (2.27) 3 3
limsup |[ull2—r1] < cill@llpz(-ar2r) < c1c2(2L)2 = cL2.
t—o0
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Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

2.2 Viewing Kuramoto-Sivashinsky as a Perturbation
of Burgers’ Equation

Based on [GOO05] in this Section we prove the statements outlined in Section 1.2
of Chapter 1. First we introduce basic properties of the Kuramoto-Sivashinsky
equation in Section 2.2.1, afterwards, in Section 2.2.2, the convergence of rescaled
solutions of (KS) to solutions of (BE) with entropy condition (EC,:) is shown.
Based on [DOWO04] in Section 2.2.3 the justification why the right-hand side
of this entropy condition is negligible is proven so that the rescaled solution of
the Kuramoto-Sivashinsky equation solves (BE) with entropy condition (ECy).
Afterwards, in Section 2.2.4, we derive the bound claimed in Inequality (1.14)
for such solutions. In Section 2.2.5 we translate this bound back to the original
solution of the initial boundary value problem (KS), (PCp), (IC).

2.2.1 Properties of the Kuramoto-Sivashinsky Equation
First we prove translation invariance of (KS) in space and time.

» Lemma 2.10 (Translation Invariance).
The Kuramoto Sivashinsky equation is translation invariant in space and time,
i.e. if u(x,t) is a solution of (KS), then so isv(x,t) = u(x + y,t + 7). <

Proof.
Let z := x + y and A :=  + 7, then by chain rule u;(x + y,t + 7) = u3(z,A) and
Uy(x +y,t +17) = uy(z, 1), so that

ve(x, t) + (%vz(x, t)) + Uy (%, 1) + Usrexex (X, 1)

X

1
=w(x+y t+7)+ (Euz(x+y,t+r))
X

F U (X + Yt +T) + U (X + Y, £+ T)
1
=uy(z,A) + (Euz(z, A))

+ uzz(z’ /1) + uzzzz(z: A)
=0

z

and the initial value is given by vy(x) = v(x,0) = u(x + y, 7). ]

Section 2.2
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Next we derive energy estimates for solutions of the initial boundary value

problem.

» Lemma 2.11 (Energy Estimates).

Let u be a solution of the Kuramoto-Sivashinsky equation (KS) with L-periodicity

(PCy) and initial values that fulfill (IC), then the estimates

sup /uz(t) dx < e€/u2(s) dx,

te(s,s+T)

s+T -
/ /u)zc dxdt < e? / u’(s) dx,
ss+T
/ / ut dxdt < e / u?(s) dx,

s+T % T
(/ /|ux|3 dxdt) < eZ/uz(s) dx

hold foralls > 0and T > 0.

w1y

Proof.

(2.31)

(2.32)

(2.33)

(2.34)

|

Because of translation invariance in time (see Lemma 2.10) we can assume s = 0.

The calculation

/ wtu, dx = — / (uz)xu dx = —2/ wu, dx
/ u?u, dx = 0.

implies

With this we get

- 2
(KZS) / u(_(u_) — Uxx — uxxxx) dx
2 x
= _/ wu, dx — /(uuxx + Ullsexxx )X

(2.35)
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= / ut —ut, dx. (2.36)

Via Holder and Cauchy inequality (see Propositions A.2 and A.3 in the Appendix)
the first integrand can be estimated by

/u,zcdx:—/uuxxdx

< Nt |l o,y

2)
< lullee ooy Nusx ez o,y

(A3)

1 c
< E”uHI?:Z([O,L]) + Elluxx||1%2([0’L]) (2-37)

for all ¢ > 0. Using Estimate (2.37) with ¢ = 2 in Equality (2.36) one gets

d 1
' Euz dxz/u,zc—u,zcxdx
(2.37)

_ 1 2 2 2
< Z”uHLz([O,L]) + ||uxx||L2([0)L]) - / Uxx dx

1 1
:—/—ude
2 2

and by Gronwall inequality (see Proposition A.9 in the Appendix)

/ u’(t) dx < el / ug dx, (2.38)

which implies (2.31). Integrating Equation (2.36) we get

1 1 t t
—/uz(t) dxz—/ug dx+/ /uxdxdt—/ /uxxdxdt
2 2 0 0

so that setting ¢ = 1 in Inequality (2.37) we have

1 t 1 t
—/uZ(t)dx+/ /uxxdxdt=—/u(2)dx+/ /uxdxdt
2 0 2 0
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(237) 1 1 !
< —/ugdx+—/ ‘/uixdxdt
2 2 Jo
1 t
+—/ /uz(t) dxdt,
2Jo
which together with Estimate (2.38) implies
t t
/ /uxx dxdtﬁ/ug dx—/uz(t) dx+/ /u2 dxdt
0 0
t
S/u(z)dx+/ /uzdxdt
(z 38) :
ug dx+/ 2/u0 dxdt
( g—1)/140 dx
Seg'/u(z) dx,

proving Inequality (2.33). Estimate (2.32) follows from Inequalities (2.31), (2.33)
and (2.37) with ¢ = 1, since in fact

(2.37)
/ /u dxdt < / /u dxdt + - / /
S - sup/ 2(t)dx‘/ dt+e? /u(z)dx
2t€(0,T 0

(2.31)

3
< eg‘/ugdx(T+1)

T
ez /ug dx.

By Inequality (2.33) ux, € L?([0,L]) so that the Sobolev embedding (see Propo-
sition A.7 in the Appendix) gives

A

uy € C*2([0,L]) (2.39)
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and because of the periodicity condition (PCy), there exists a y € [0, L] such that
ux(y) = 0. (2.40)

This yields

w2 (x) 22 (x) - 12 (y)

X
=/ Al dx

y

2

< [ ()] dx
= 2”uxuxx”Ll([O,L])
(A.2)
S ullze oo luxxllzz o,y
and therefore

1 1
sup lux| < “uxHLZZ([())L])”uxX“LZZ([O’L])‘ (2.41)

x€[0,L]

Using (2.41) together with Inequalities (2.37), (2.31), (2.32), (2.33) we arrive at
T
/ /luxl3 dxdt
0
L gy Bl g [ sl
N u U u xdt
o ooy Lz oLy T

:/OT(/ w2 dx)H}l(/ i, dx)idt
D) ([ otas] ([ ) ([ o]
St:g%)(/ u?(t) dx)é'/OT(/ ul dx)i(‘/ ul, dx)zdt

1 1 3
(2.31) 2 T 3 i
< (egv/u(z] dx) / (/ ul dx) (/ U, dx) dt
0
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3
AZ) T 1
< (g/uodx) (/ /u dxdt) (/ /uixdxdt)
0
(2.32),(2.33)
< (eg‘/u0 dx) ,

which concludes the proof of Estimate (2.34). [ |

Using the connection between conservation laws and Hamilton-Jacobi equa-
tions described in Section 1.2 of Chapter 1 we now define h and get integral
identities for u and h, which will be needed in Lemma 2.13 and Theorem 2.16.

> Lemma 2.12.
For a L-periodic (PCy) solution u of the Kuramoto-Sivashinsky equation (KS)
with initial condition (IC) and h such that

1.
R b ZEC R
one has
iz‘/m‘/u4dx§dt+l‘/m(/—u dx) {dt+/ /u dx { dt
/ / xxhdx{dt—/ ‘/—uzhdxgtdt
2.
) e

one has

l‘/ /u4dx{dt+/ /uidxgdt+/ ‘/luzhdxgvdt
2 Jo 0 0 4
) 1 2 00 1
:/ /(—u+uxx) hdxgdt—/ /—uzh dx i dt (2.44)
0 2 0 2
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for all { € C°((0, 00)). <
Proof.
As discussed in Section 1.2 of Chapter 1 there exists h such that
(ht) _ (—(%u2 + Uy + Upyyx) + g)’ (2.45)
hy u

where g is spatially constant in order to prove both statements at once. We define

14 Lu?
V= 2 , 2.46
(Vg) (%Lﬁ + Uy + Ullyxx — UxUxx (2.46)

which like h has L-periodicity and calculate

k) 1 1
Blov=[2u?] +=u® + vty + ttherr — Uiy
3y 2" .73

X

= Uty + Ut + UE + Ul + Ullyyrx — U2,

(KS) 4

= —U Uy — UUyxxy — UUxxxx T uzux + ui + UlUxx + Ulsxxx — ll)zcx

=u’—ul, (2.47)

such that partial integration yields
) ht
‘/0 /V-(hx)dxgvdt
——/ /h( )-de{dt—/ ‘/thdx{tdt

(247) //u_u dxgdt—/ /thdx{tdt
(2.46) //u_u dxgdt_/ -uhdxgtdt (2.48)

Looking at the left-hand side of this equation we get, by the Definitions (2.45) of
h and (2.46) of V,
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[
S o (T

( 1u +ux+uxxx)+g)dx§dt

u

o 1, 1, 1, 1, 1,
= — U = =U Uy — U Uyxx + —UG+ —U
/0 /( 4 gt e Tt o T U T S

+ Ul Uy + Uy — uuxuxx)dx dt

/ /(—u+ ug)dx{dt
1y 1y
+ —U Uy + —U Uy — UllxUyy |dx { dt. (2.49)
o 2 2

Partial integration implies

/ Ul Uyy dX = —/ ui dx — / Ul Usx dX

such that
2/ UlyUsy dX = —/ uf’c dx. (2.50)
Similarly
/%u‘zux dx = / wu, dx
yields

/ wu, dx = 0. (2.51)

Using these two identities the second term on the right-hand side of (2.49) can
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be expressed as

*© 1 1
/ /(—uzux + =l Uyry — uuxuxx)dx ¢ dt
o 2 2
« 1
@51) / /(—uzuxxx - uuxuxx)dx dt
0 2
= ——Ox U Uy — UllxUyy |dx { dt
0 2
—/ /Zuuxuxx dx { dt
0
20 / / W3 dx ¢ dt. (2.52)
0
Combining Equations (2.48), (2.49) and (2.52) we get
1,
—u + 24 g+u|dx { dt
1 1
/ /(Eu4 + —uzg)dx ¢ dt
L,
—u Uy + —U Uyxx — UllylUyy |dX { dt
2 2
%‘”/ /v. (hf) dx { dt
hy
©1
/ / h(u? —ul,) dx { dt - / Euzh dx {; dt, (2.53)
0

which, with g = % %uz dx, proves part 1.

In view of part 2 we calculate

/ (u - u )h dx = / (ufcxh + Uty h + uuxhx)dx

(2.45)

= / (uixh + Uty h + u2ux)dx

Section 2.2
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@51 /(uixh+uuxxh)dx

1 2 1
:/(§u+uix) hdx—/zuzh dx. (2.54)

Plugging this into (2.53) and setting g = 0, one gets

/ /(iu4+u§)dx§dt
o 12
.l o 001
‘Zi”_/ /h(ui-u,ix) dxgdt—/ Euzh dx {; dt
0 0

00 2 o
: 1 1
‘Zi‘*)/ /(-u+u§x) hdxgdt—/ /-uzhdxgdt
0 2 0 4
*1
—/ —u*hdx { dt,
o 2

concluding part 2. ]

Now we show that the solutions have regularity u € L*((s,s + T); L*(0,L))
foralls > 0and T > 0.

» Lemma 2.13 (Uniform Integrability).
Let L = 1 and u be a solution of (KS), (PCy), (IC), thenforalls > 0and T > 0

s+T X T %
/ /u4 dxdt < L2 (62 / u’(s) dx) . (2.55)

|

Proof.

Using the translation invariance in time (see Lemma 2.10) we can assume s = 0.
Let h be defined as in part 1 of Lemma 2.12. This leaves us the freedom of an
additional constant which we chose to be such that

/0 ! / h dxdt = 0. (2.56)
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Then we get
d
E / hdx = / ht dx
1 1 1
=_ / (_uz + Uy + Ugexe — —/ —u?(%) dJ'c)dx
2 L 2
1, 1o
=- “U” + Uy + Usxx [dX + ~u”(x) dx
2 2
T / (luz F Ux + Uxxex — 1uz)dx
2 2

= _/(ux + uxxx)dx

=0

by the periodicity of u and therefore u,,. So f h dx is constant in time and by
Equation (2.56) we have
/ h(x,t) dx =0

forall 0 <t < T. With h, = u and the same arguments as in (2.39) and (2.40)
there exists a y € [0, L] with h(y, t) = 0 so that

|h(x, 1) = |h(x, 1) = h(y, 1)

(A2)
< e croop lellzz o)

= (L/uz(x, 1) dx) ,

ol=
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where the right-hand side is independent of x. Therefore

sup |h(x)| < (L/uz(x, t) dx)2

x€[0,L]
and
1
2
sup |h(x,t)| < |L sup /uz(x, t)dx]| . (2.57)
x€[0,L] te[0,T]
tel0,T]
Let { be the mollification of
1 for x € (0,T)
Xo1) (%) = , (2.58)
0 else

the characteristic function of (0, T). Then ¢ € L2(0,T) and therefore converges
in L? meaning that we can use it in part 1 of Lemma 2.12 and get

1 [T 1 T 1 2 T
—/ /u4dxdt+—/ (/ —uzdx) dt+/ /uidxdt
2 Jo L Jo 2 0
T 1 T
——/ /(ui—uix)h dxdt—/—uzh dx
0 2 0
which with the energy estimates (2.31) - (2.34) and (2.57) proves
T
/ /u4 dxdt
0
/ /u dxdt
+—/ (/ —u dx) dt+/ /u +|ux|3)dxdt
G 1 T
e / /u hdxdt—/guzhdx|tlo+/ /|ux|3dxdt
0

, (2.59)
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1

@57 T , 2
< / /lux|3 dxdt +[L sup /u (t) dx
0 telo0,T]

(2.31)—(2.34)

A

T 1
/ /u,zc+u32€x dxdt + sup /—uz(t) dx
0 tefo]J 2
%
(1+L;)(e§/ug dx)

3
2
sLé(eg/u(z) dx) ,

where the last estimate holds because L > 1 by assumption.

» Lemma 2.14 (Initial Layer).

Let L > 1 and u be a solution of the initial boundary value problem (KS), (PCy),

(IC), then there exists a constant ¢ > 0 such that

for all t > 0.
Proof.

Let

and introduce

so that

L 1
/ u?(t) dx < cL3(1 + t_z)
0

0<T<1

s+T
g(s) :=/ ‘/u2 dxdt

9'(3)=/u2(S+T) dx—/uz(s) dx.

(2.60)

|

(2.61)

(2.62)

(2.63)

Section 2.2
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Fort € (s,s+T) we get s + T > t and therefore by the energy estimate (2.31)
s+T
T/uz(s+T)dx:/ dt/u2(s+T)dx
’ s+T
= / / u’(s+T) dxdt
y s+T
< / sup / u* (1) dxdt
s re(t,t+s+T—t)
@31) T o,
< / ™7 /uz(t) dxdt
TS s+T
<ez / / u?(t) dxdt
T
< / / u?(t) dxdt

=9g(s).

(2.64)

Using Hoélder inequality (see Proposition A.2 in the Appendix) and the uniform
integrability (see Lemma 2.13) one gets

s+T
g(s) =/ /u2 dxdt
s
(A.2) s+T % s+T , ) %
I [
s s
. s+T %
T2 (/ ”uz('a t)”il([o)L]) dt)
s
) s+T Z 9 9 %
T (/ ”1”L2([0,L])”u (" t)HLz([O,L]) dt)
s
s+T %
( / / (1) dxdt)
s
(2.55) i
< LZTé(J/uz(s) dx)

(

INZ
D=

[T
[T

LT
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3
(2.61) 1 1
< LiT? (/ u’(s) dx) , (2.65)

which together with (2.63) and (2.64) yields

/uz(s) dx:/uz(s) dx—/uz(s+T) dx+/u2(s+T) dx

(2.63

£3) -4’ (s) +/ u(s+T) dx

(2.64) , c
< —(5) + Z905) (2.66)

Combining (2.65) and (2.66) we arrive at the differential inequality

g(s) < LiT? (—g’(s) - %g(s))z. (2.67)
Defining
o(s) =€ 7 g(s) (2.68)
such that by
0(s) =~z Tg(e) +e T g'(5) (269)

we can rewrite (2.67) as

cs (2.68)

eTo(s) = g(s)
(2.67) 3
< LiTH=g'() + 29(9)’

3
= LiTH(=e% (-2 Pg(9) + e 79 (9)))]
3
(2:69) 7 (—eLqu)’(s))4 (2.70)
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and get

3\ ¢s) e N
( : ) =—¢4(s) > T3l 7le. (2.71)
@3 (s) @3 (s)

Since g and therefore ¢ is by definition non-negative this yields

073(s) 2 973 (s) — 073 (s0)

1 S 1 ’
== (S(p 3(T)) dr
3 Js,
2.71 S or
( > : 1/ T™5L e dr
3 Js,
S
I ]
3 c

> T%L‘l(e% - eTT°) (2.72)

So

Setting sy = 0 one obtains

(2.72) 1
o(s) < L°T7! z (2.73)
o)
and therefore
(2.64) 1 68) 1 cs 2.73) L3 T
/ w(s+T)dx 5 g(s) (2.58) zeTo(s) < ¢ (2.74)

T2 3
")

forall0 < T < 1ands > 0. Now we distinguish between small and large times ¢.

« For t < 1 choosing s =T = £ yields

(274) 413 ¢ L3
/uz(t) dx:/uz(s+T) dx < t—e— <% @)
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. . _C(Zl*l) _c
« Fort > lchoosmgT:%ands: t—%yleldse 3 < e 3 <1,sothat

/uz(t) dx=/u2(s+T) dx

274) ec(2t=1)

< 4
c(2t-1)
55 -)

1
c(2t-1) \ 3
)

s L’ (2.76)

sL’

Combining Estimates (2.75) and (2.76) implies

/ W2(F) dx < L3(1 4 tlz)

which concludes the proof. ]

Next one derives Holder continuity for h as defined in Equation (2.43).

» Lemma 2.15 (H6lder Continuity of h).
Let u solve the initial boundary value problem (KS), (PCy), (IC), h be given by
(2.43) as in part 2 of Lemma 2.12 and M be defined by

M(T,s) = e® / u%(s) dx. (2.77)
Then
|h(x1, t1) = h(x2,1)] S M2|x; = x3|% + M3 |t; — 55
+M%|t1—t2|i+M%|t1—tZ|§ (2.78)
holds for all x;,x; € R, s >0, T > 0and t,t; € (s,s+T). <
Proof.

By translation invariance in time (see Lemma 2.10) we may assume s = 0. We first
prove the Holder continuity in space. Let therefore ¢y € (0, T) and x1, x2 € [0, L],

Section 2.2
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then by energy estimate (2.31)

(2.31)
sup /uz(t) dx < eg/ug dx =M, (2.79)

te(0,T)

such that with Holder inequality (see Proposition A.2 in the Appendix)

/ hy(x, ty) dx

X1

/ u(x, ty) dx
x1

< Ju(to) ||t (21,22)

|h(x1,t0) — h(xz, )| =

(2.43)

A2)
< {1222 ey N (0) 112 (212

- |x1—xz|%(/ 2 (1) dx)2

< |x1—x2|% sup /uz(t) dx
te(0,T)

(2.79) I
S Jx = xg|2Mz. (2.80)

1
2

For the Holder continuity in time we take the standard mollifier

N

R e 1= =108
0(9) =y (s)e T, 1= /R o(s)ds. 9s(s) = 50(3)
such that

_ S _
05(5)® = <k+l)¢<k>((—s) < 5k (2.81)

and get by the Holder continuity in space (2.80)

’ ‘/(p(g(x — x0)h(t, x) dx — h(t, xo)

= ‘/ @s(x — x0)h(t,x) — @s(x — x0) h(t, xo) dx
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x0+5
< / 05(x — x0) h(t,x) — h(t,x0)] dx

X()(S

(280) 4 [Xo*d 1
< Mz/ 05(x = x0)|x - x0l dx

X0

X()+5
/ 05 (x — %) dx

x05

257, (2.82)

Using the definition of A, this yields
|h(x0, t1) — h(xo,t2)]

= ‘h(xo, t) — / os(x — x0)h(x, 1) dx

+ / 05(x = x0)h(x, 1) — 95(x — xo)h(x. 1)

+/ s(x — x0)h(x, t2) dx — h(x, t2)

(2.82)
<

2M28% + / 0s(x — x0) (h(x, t1) — h(x, t2))dx

t
/ / @s(x — x0)hs (x, t) dxdt
t2
t 1
/ / ps(x _Xo)(guz + Uy +uxxx)dxdt
ty
We want to calculate the last integral. Observe that for the quadratic term
151 f
/ / ¢s(x — xo)u” dxdt| < (sup gs)| sup / ' dx / dt
2 te(tatr) t

(2.81)
< |tz —1]67" sup ‘/u2 dx
te(0,T)

ol

+

< M2§

“. . (283)

([N

o=

3 Mi8% +

(2.79) 1
< | —t|6TM (2.84)
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and for the derivative terms, since 0 < t1,t, < T,

t
/ /(Pé(x — %0) (Uy + Uyxx) dxdt
2

/ 1 / (05)x (x  X0) + (98)exx (x — %)) u dxdt

(A.2)
<

51
/ 1(@5)x + (@5)xxx L2 ([=xo.L—xo]) 1|22 ([0,L]) At

ty

; 151 %
/ (/ u? dx) dt
ty
(2.81) g 2 3o
< (5_2+5_4)(/ dx) sup /uz dx / dt
-5 te(0,T) ty

(2.79)
< (5TE+ 57 SIME|ty — 1 (2.85)

) 2
< ( / o+ <<p5>xxx>2dx)

holds. Plugging Estimates (2.84) and (2.85) into (2.83) we arrive at
1h(xo, 11) — h(xo, £2)| < M2 & (1 - t2|(M%5—% 462y 5—4)). (2.86)

We want the bracket on the right-hand side to be constant. This is accomplished
by setting

1 2 1 1
6 = max{M} |ty = 3, 1y - ol 1y — ], (287)
since then
1 . 1 2 1 1\7!
67" < (min{Mi 11 = 615,181 - ol It - 2]}

and therefore

3
3 2\ 2
MisTh <Mt (Mn - nlf) T =10 -6l
2 1\ 72 1
57 < (|t1—t2|§) = |ty —ta] 7,
4 1\~ 1
5_ < (ltl - t2|1) = |t1 - t2|_ . (288)
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Combining these estimates yields

(2.86) 11 1 3
h(xo, t1) — h(xo,12)] < A425§(1-+|q - Q|(A4?5_5 +(5—24-5—4))

(2.88)
< 4M

)

[T
[

)

@

[T

87) 11 2 1 1
< ME(M31t =l + 1t - ol + 1 - )

2 1 1 1 1 1
S M3\t — |3 + M2t — b|T + M2|ty — 1|8, (2.89)

So h is also Hoélder continuous in time. The continuity in space and time imply
continuity in space-time, since

|h(x1,t1) = h(x2, t2)| = |h(x1, t1) — h(x2, t1) + h(x2, 11) — h(x2, 1)
< |h(x1, t1) = h(x, t)| + |R(x2, t1) = h(x2, 22)]
(2.80),(2.89) 4 1 2 1
S Mzxy — x| + M3ty — 1]

+ M2t — to] i + M2Z|t; — t,]5.

2.2.2 Convergence of Rescaled Solutions of the
Kuramoto-Sivashinsky Equation

Because of the properties derived in Section 2.2.1 we can now state that if
the solution u is rescaled according to u(x,t) = La(Lx,t) = Li(%,t), then u
converges to a solution of the Burgers’ equation. The explicit convergence is
stated in the following theorem.

» Theorem 2.16 (Compactness).

Let L, be a sequence such that L, 7% 0 and u, a solution of (KS), (PCy), (IC),
where L = L,. More precisely fix uy with initial conditions (1.10) and let u, (x, t)
solve

(uv)t + (%ui) + (uv)xx + (uv)xxxx =0, (KSV)

u,(x+ Ly, t) =u,(x,t), (PCr,)
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L
uv(x: 0) = uv,O(x) = uO(L_x)- ac,)
v
Under the rescaling
x = L,X,
t=1
uy(x,t) = Lyily (%, 7) (2.90)

there exists a subsequence @, of i, and a 1-periodic function 2 € Lfoc ((0, 0)xR)
with zero average such that

1
ii; + (—az) =0, (BE)
2 x
1 1 1
—i?| +(=a®| < =P (EC,2)
20 ), 3 ). 4
in D*((0,0) X R). <
Proof.
To omit unnecessary indices we will relabel sequences such that subsequences

. ~ H—00 . L VDo . . .
like iy, — @ can be written as @, — #. We will also write C without

relabeling it for different constants depending only on T but not on v.

Weak Convergence
FixT > 1andletf € (% T), then Lemma 2.14 implies that there exists a constant
C > 0 such that

v

L,
/ 2(TY) dx < L3 (14 T2) < CL. (2.91)
0
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Lemma 2.13 states that

s+T 1 7 %
/ / ul dxdt < L2 (ez / u(s) dx)

T L 771 2
/ /u‘f, dxdt < L} (e 2 /u%,(T_l) dx)
T-1
2
<cLi ( / 2(T7) dx)

(2.91)
< CL. (2.92)

and therefore

The rescaling (2.90) implies
NvllLscr-11)n2 0y =

T p1 i
/ / at(x, ) da%dt)
T-1Jo
-

1
1
/ at(x, 1) d;%df)
T-1 J%(0)

Il
S —

so that by (2.92)

X Ly\*
ol La (1100 (10.17)) S (C—V) =C (2.93)

and because of the periodicity condition (PC; ), i, is a bounded sequence in
L*((T7,T); L. ([0,1])). Now we can apply the sequential weak compactness

per
theorem (see Proposition A.11 in the Appendix) and find a subsequence #, that
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is weakly convergent to some 2 € L*((T™1,T); L2,.([0, 1])). So

per
i, = U (2.94)

in L*((T™", T); Ly, ([0, 1])), meaning that

lim (o, ) = (o, )

*
holds for every ¢ € (L4((T_1, T); Ly, ([, 1]))) . Since

22 s (2.93)
Wlliz oy oy = s masqony = € (2.95)
and
(2.93)
~3 —_ s 14
uV |3 - ||uV||L4((T—1’T);L4([0’1])) S C:

4 4
L3 ((T-1,T);L3 ([0,1]))

the sequential weak compactness theorem (see Proposition A.11 in the Appendix)
can be applied again and there exist 4% € L*>((T}, T);L;er([o, 1])) and @3 €

4
L3((T71, T); Lier ([0, 1])) with
i — 2 (2.96)

in L2((T~Y, T); L2,.([0,1])) and

per

a0 — 3 (2.97)

i 4
inLs((T74, T); L3e:([0,1])). Similarly we get

(2.93

)
A 4
Loy =Nl maqony  C (2.98)

it
Since L' is not reflexive, we can not apply the same procedure to #%. But
as L! functions can be viewed as weighted Lebesgue measures and therefore
Radon measures, (2.98) shows that 4% is a bounded sequence in RM((T~%, T);
RMper([0,1])). So we can apply the sequential weak star compactness theo-
rem (see Proposition A.12 in the Appendix), which now states that there exists
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a* € RM((T%, T); RMper ([0, 1])) that fulfills
at St (2.99)
in RM((T%, T); RMper ([0, 11)) = (CO((T~%, T); C°([0, 1])))*, meaning that
lim (i, y) = (@%,y)

holds for every ¢y € Cg((T_l,T);CO([O, 1])). Under the rescaling (2.90), the
Kuramoto-Sivashinsky equation (KS,) becomes

1

L—4(ﬁv x5z = 0. (2.100)
1%

i+ (5)

1
+ —(dy)zz +
2 L3

So i, solves (2.100) with initial condition

1 1 L 1
o,y (X) = —uyo(x) = —up| —x | = —up(LX).
o) = foa(x) = | 1) = (i)
By the choice of the rescaling (2.90), X is non dimensional. So derivatives of ¢
do not increase as v — oco. Therefore the Convergences (2.94) and (2.96) imply
that the rescaled Kuramoto-Sivashinsky equation (2.100) converges as

) R 1, 1,
0= lim <(uv); + (Eui) + p(uv)ﬁfc +
x v

V—00

1,
I (Gy)222% (.0>
v

= — lim (4, ¢;) — lim <112?/, (p,g>
Vv—00 y—o0\ 2
+ lim — (@y, Pzz) + lim 1 (v, Pizzz)
V—00 L% Y—00 L‘ll}
(2.94),(2.96

) . 1=
—(d, @;) — <5u2, <p,e>

N 1—
=\t +|u f(,q)
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for every ¢ € CX((T™1, T);C*([0, 1])). We write this as
N 1—
u; + (—uz) =0 (2.101)
2 x

in O*((T™4, 7); Z);‘er( [0,1])). By the Kuramoto-Sivashinsky equation (KS,) we
have

1 13 2 1
—uy,| +{-u,| —2((u +|-u
(2 v)t (3 V)X (( VX) )xx (2 Y XXXX

— 2 2
= Uyl + uvuvx - 4(uvxx + uvxuvxxx)

+ 3uixx + 4UyxUpxxx + Uylyxxxx
(Ki‘,) _uiuvx — UyUyxx — UpUyxxxx T u%,uvx - 4(u3xx + uvxuvxxx)
+ 3u?/xx + 4UyxUyxxx T UyUyxxxx
= —UyUyxx — u12,xX
1, (1 2
= Zuv - (Euv + uvxx) . (2.102)

Consider the right-hand side of (2.102) as a measure

—_

2
1 1
My = Zui - (Euv + vax) < —u% (2.103)

S

and define the rescaled version so that it matches the rescaling of u in (2.90), i.e.

03)

A 1 (21 2.90) 1
A8 D) = (1)< )
B

mui x, t) 2 12 (%, £). (2.104)
14

—U
4

These definitions, the energy estimates (2.31), (2.33) and Inequality (2.91) yield

T sl T p1
N ~ (2. 1 N .
/ / | (&, B)|dsdi =" / / — |u (L%, )| dsdi
-1 Jo 1 Jo L%
T pLy
= — x,t)| dxdt
[ Fliu )
(2.103) 1 /T /Lv
S N
L3 Jr1 Jo

+ |ty Uy | + |u?,xx| dxdt

L
2"
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Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

I3 S v VXX
14

(231),(2.33) 1 711

< Ee /ui(T D dx

14

(291) 71

< ez C

<C.

Similarly to before, by the weak star compactness theorem (see Proposition A.12
in the Appendix), there exists i € RM((T~", T); RMper ([0, 1])) such that

*

iy > (2.105)

in RM((T™L, T); RMper ([0, 1])) = (CO((T™, T); C°([0, 1]))*. The Convergences
(2.96) and (2.105) together with Inequality (2.104) imply

i< i (2.106)
in RM((T™, T); RMper ([0, 1])), meaning
.. 1—
lim (4, ¢) < <—u2,(/)>
V—00 4

for every non-negative ¢ € Cy((T~!,T); C°([0, 1])). Under the rescaling (2.90)
and (2.104), Estimates (2.102) and (2.103) give

1 1 1(1
LZ(—ﬁz) +L2(—a3) —2((avx)2)M+—(—ﬁ2)
v 2 v, v 3 vl X Lz 2 v JOU

t X

(2.90) (1 1 1
= (—u:‘z,) + (—u?,) —2((uyw)?) , + (—u‘z/)
2 t 3 x 2 XXXX
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where the values of u, and 1, are to be taken in (x, t) and the ones of @, and i,
are to be taken in (%, f), which implies

1., 1., 2, 1(1,, X
u +|-u - —((u o+ —|=u = [,. 2.107
(2 )f (3 V);e sz(( ) )ss L3(2 ") exis fr ( )

We can estimate the partly unscaled third term on the left-hand side by

/T1/(um)2 dzdi 2" ! / /(uvx)2 dxdt

(2.32)
< L3e == /u(Tl)dx

<C. (2.108)

So that in the limit the Convergences (2.96), (2.97) and (2.105) yield

(i, fp> hm . (f1y, ¢)

. 1, . 1, L2,
= — lim <5u2w <Pf> - thgo<§ui, <Px> - lim L_%<(uvx)2,§05cfc>
1
+ vh_rgo E@% Priis)

(2.96),(2.108)

1, . 1,
— lim <2u3, ;) — }5130<§ui qo,z>
(2.96),(2.97) 1—2 173
= —_— Eu (pt gu ,(pﬁ'

_ <(%¥)t . (%E)x¢> (2.109)
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Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

for every ¢ € CX((T™1, T);C*([0, 1])) and by Estimate (2.106)

ERCERCE

for every non-negative ¢ € C2°((T~1, T);C*([0,1])), i.e.
1= 1—< 1=
02| + (=03 =p< =02 (2.110)
2 ), 37 ), 4

in D*((T™1, T); Dy ([0, 1])).

Strong Convergence

We will now improve the weak convergence (2.94) into the strong convergence
i, — 4in L*((T74, T); Lger( [0,1])). For this purpose let h, be defined as in part
2 of Lemma 2.12, i.e.

(hv)t _ _(%u% + (uv)x + (uv)xxx)
((hv)x B Uy ’ (2111
normalized similarly to (2.56) by
T
/ / h, dxdt =0
T-1
and rescaled according to
hy(%,1) = L72hy(x, 1). (2.112)
For M as in Lemma 2.15 and the time domain (T~}, T) we get
. 1 (2.91)
M=MT -T2 5 / (T Y dx < CL? (2.113)

so that the Holder continuity of h, (see Lemma 2.15) yields Holder continuity of
h,, since

|hv(7%1,f1) - hv(fZ: f2)|

(2.111) . _
= va|hv(x1, t1) — hy(x2,t2)|
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@78 __, 1 1 2 1
S L (M = xolt 4 M| = )
1 1 1 1
+M2|t1—t2|4+M2|t1—t2|8)
(2115 3 1 2 1
< CL (L‘2,|X1—X2|2+Lv|t1—t2|3
3 1 3 1
+Lilh - ol + Lt - b))
(2.90)

(lxl—x2|2+|t1—t2|3+Lv |t1_t2|4+Lv |t — B|® )

for t1,1, € (T™1,T). Then by Arzela-Ascoli (see Proposition A.8 in the Appendix)

there exists a subsequence h,and h € Co([T74, T]; Cger([o 1])) such that

A

h, — h (2.114)

in CO([T™1, T]; C2..([0,1])). The rescaled version of Equation (2.111) is given by

per

((};v)f (2.112) L;z(hv)t)
(h:] — \L7H ()
(2.111) —L;z(%u% + (uv)x + (uv)xxx)
B L'u,
%L +(dy)z + L, (uv)xxx))

iy,

_ (_(%ﬁzv Vi(@)z + Ly, (uv)xxx)) (2.115)

iy,
The Convergences (2.94) and (2.96) imply

(2114)

~(h.gs) =" = lim (hy. 3)
= lim (b)) )
(2.115)

: 1, 9 A 4,
lim <—(§u2v + L% ()5 + Lv4(uv)ﬁ;z), </J>

v—00
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Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

1 .
= -7 L lim (u Q) + hm L—(uv, Oz) + hm I (uv, Oxz#)
V

14
(2.94),(2.96) < 1— >
= —Eu N0

and
A (2.114) . A
_<h! (Pfc> = - ‘,1513001‘/’ (pf(>
= lim ((hy)z. 0)

(2. 1]5) hm <uv’ (p)

<ﬁ, ®)

for every ¢ € CX((T™1,T);C*([0,1]). By almost everywhere uniqueness of
weak derivatives we get

h; = —=42. (2.116)

Applying part 2 of Lemma 2.12 yields

1 [T !
S [aascaiens [ o anca
T-1
T
=L, —/ /u dx {dr+L; / /((uv)x)3dX§dt
T-1 (.
1 1
244) / /((—UV‘l‘(uv)xx) - Zui)hv dxgdt
-5 1 2
— Lv / / —uvhv dx gt dt
T—l 2
) T T ri
(2.109 —L;S/ /hv§ duv(x,t)—LJS/ /—uzvhv dx g dt
T*l T71 2
T T
. . 7 N 1 h f
(2104),:(2112)_/ ‘/hvgdﬁv(f,t)—/ /E’:‘zvhv dz ¢ dt (2.117)
T-1 T
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for every { € C®(T™L, T). The unscaled second term on the left-hand side
vanishes in the limit, since by the energy estimate (2.34)

T T
L;S/ /|(uv)x|3 dx {dt < sup {(t) L;S/ /|(uv)x|3 dxdt
T-! te[T-LT] T
3
(2.34) -1 H
< CL‘S( = /uz(T_l) dx)

3

< CL;5(/ u*(T™) dx)z

291
(< CL, 5L2

—0. (2.118)

So by the Convergences (2.96), (2.99), (2.105), (2.114) and (2.118) in the limit
Equation (2.117) becomes

1 T o T . T 1—.
—/ /gdﬁ“(ﬁ,f):-] fhgdp(;e,f)—/ /—ﬁzh d% ¢ di.
12 T-1 T-1 T-1 2

(2.119)

1 is 1-periodic by (PCy,) under the rescaling (2.90) and therefore /i and h are also
1-periodic. CZ((T7!, T); C*([0,1])) is dense in CJ((T~%, T), C°([0,1])) and y €
RM((T™, T); RMper ([0, 1])) = (CO((T™4, T);C°([0,1])) ™ such that by (2.109)

i) ol e

holds for every ¢ € CJ((T™*,T),C°([0, 1])) and we can calculate the first term
on the right-hand side of (2.119) as

[ s =) i) s
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Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

T 1_}\ T 1_}\
=/ /Efﬂh;dﬁ{dh/ /Eﬁzhda?gfdf
T-1 T-1
T 1—.
+/ /—123}1,; dx ¢ di
1J 3
2116 T ri1=\° Y p— )
(“:”)_/ /(-m) d;?{dt+/ /-mhdm di
T—l 2 T’l 2
T ri—= .
+/ /-ma dx ¢ di. (2.121)
-1J 3

Hence combining (2.119) and (2.121) yields

1 [T — T 1=\ T rq—
—/ /gdﬁ‘l(&,f):—/ /(-aZ) da%(df+/ /—aﬁ3d£§df
12 Jr— -1 2 -1 3

(2.122)

for every { € CX([T™Y, T]). For 0 < n € C([T!, T]) Equation (2.122) and the
Convergences (2.94) - (2.99) imply

T
0< lim/ /(ﬁv—ﬁ)4da%r7df
v—eo Jro1

T
= lim / 1 / (@4 — 40’0 + 64%0° — 44, 0° +4*) d% n di
-

V—00

T _ T _ _
(2:54)-(2.59) / / n did(%, 1) + / / (—4a3a+6a2a2—3a4) d% n di
T-1 T-1
D 1o T N\ 2 _
@122 4 / / ((uZ) —za2a2+a4) dz n di
T—l
T _ 2
:—3/ /(ﬁz—ﬁz) ds n di
T-1
<0

such that by the fundamental lemma of calculus of variations

lm [y = alls 77y (f0an) = 0
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which proves the strong convergence
4, — (2.123)

in L*((T™', T); Ly, ([0, 11)). Using Holder inequality this also gives strong con-

vergence of 4% — 4% in L((T~1, T); L*([0,1])) since

. A2 A2112
N [l = @711 (71 7.2 o)

_ N ANCA A2
= Vh_rgo (%, = a) (i, +u)||L2((T—1’T);L2([0’1]))

lim {|(@, - @) (4 + 4|l (-1 1901 ([0.1]))

(A.2)

IA

Vli_{rolo(H(ﬁv — ) llz -1z o |1 @y + D)2z (71122 ([0.11)))

. ~ ~ ~ ~ 2
= lim (lldy = @llps vy oy b + @l (11 o))

IA

im (|l = llzs -1,y o1

~ N 2
(1l ((m-1.1):2 o1y + Ndlle((r-1.1):24([0.11))))

(293) 1 R g
< 207 Iim fldy = @llLe (71 1oy

2123
( 1 ) 0
and similar the strong convergence 4> — @ in L3 (T4, 1); L3 (0, 1])) because

4
lim ||ﬁ|3/_ﬁ3”34 4
Voo L3 ((T7LT);L3 ([0.1]))

4
lim ||(2, — @) (42 + 4% + ad,)||°, s
v—00 L3 ((T~1,T);L3 ([0,1]))

. ~ =) A2 aa 4
lim [|(d&, —4)3 (@, +4° + ady) 3 |1 (-1, 1501 ([0,1]))
V—00

A2 L
< lim {IG@y = @)3 Mo ((r-1m)2 [0y

w2 a2 s nd
Il (@, + 4 +”“V)3”L%((T—l,r);L%([o,l]))
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< Jim, ((”ﬁv =l o)

~2 ~2
(a2 + a2 |+ @t

L2((T-LT):L2([0.1 VILY(T- 1T)Ll([O,l]))))

2
= 3520((””” “”L4<<T1T>L4<[011>>)

2
+ @1}

||u2|| 2 1 2 2 1 2
L2((T7\D)L?([0.1)) L2((T)L?([0.1])

)2
+ia HLZ((T1T)LZ([0,1]))Hu"”£2((TI,T);LZ([O,I]))))

@95 5 )
< 3C3 lim flay, - ””L4<<T LT)LA([0.1]))

(2.1:23) 0.

These strong convergences imply the weak convergences 2 — 42 in L*((T™!, T);
L2([0,1])) and @3 — #%in L (T74,1); L ([0, 1])). Weak limits are unique, since,

for example in the case of @2,

Loy (296) . . . N
(p. 8 = 8%) = (p. 8) — (g, 8%) =7 lim (g,8) - lim (p, %) =0

for all ¢ € (L2((T~%,T);L?([0,1])))*, implying 42 = 42 and similarly 43 = 2°.

This turns (2.101) and (2.110) into

in O*((T™,T); Dy ([0, 1])). u

2.2.3 Entropy Conditions for Burgers’ Equation

In this Section we investigate entropy conditions for Burgers’ equation based on
the work of De Lellis, Otto and Westdickenberg [DOWO04]. In order to gain a
more general result /i will here be an arbitrary Radon measure with vanishing
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Derivation of the Bounds

H'-density instead of iﬁz as in the proof of Theorem 2.16. We will show that
even such a measure on the right-hand side of (EC ) is negligible.

First we need to define the following form where @ can be interpreted as a
variable.

» Definition 2.17.
Let o be a probability measure on R,v € LY(R, o) and the average of v be given
by

) = '/Rv(ﬁ) do(1).
For f,n € Wkl)’cw([R) and q(2) = foﬁ f(M)n’(A) dA define the form B as

B(f.) = <(Z) ' (_uf )> i <Z> | <_ﬁf>

= (aq) = (nf) + (FH{m = (@){q).

<
> Lemma 2.18.
The form B defined in Definition 2.17 fulfills the following properties.
1. Bis bilinear.
2. If 4% is y-summable then
(it — (@))*) < 3B(2% 0%). (2.124)
3. If p has compact support and f and 75 are convex then
B(f,n) > 0. (2.125)
4. If p has compact support and ", n” > 2¢ then
3B(f,n) = ¢*((a - (@))*). (2.126)
<«



Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

Proof.

1. For f=g+handn=v+{ we get
ql:fl’?l:glvl+gl§/+hlvl+hl§l:qév+qé§+q;1v+;l§
and

q =dqgv+qg; +qnv + qn;

such that

B(g+h,v+n) =B(f.n)

= (ug) — (nf) + (N — @){q)

= (U(qgv + qgz + qnv + qnz)) — ((v+ {) (g + b))
+(g+ ) v+ Q) = (@) {qgv + qg¢ + Gnv + qny)

= (Uqgv) + (Uqgs) + (Uqny) + (Aqns)
—(vg) = ({g) — (vh) — ({h)
+(g)(v) +(g)({) + (R (V) + (h)({)
= (U){ggv) — (@){qg) — @) {qnv) — (@){qn¢)

= B(g,v) + B(g,{) + B(h,v) + B(h,{). (2.127)

For f = Ah and 5 = 7{ one has
¢ =f'n' =Ah'{’ = drqp,
and
q = Atqn;

such that

B(Ah, 7{) = B(f,n)
= (aq) = (nf) + (FHm = (@)<{q)
= (UArqny) = (t{Ah) + (Ah)(r0) — (@) {Arqns)
= At(agny) — TA(Ch) + Ar(h)(Q) — Ar(@){(qne)
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= Az ((lgny) — (hY + (R)(0) — (@) {qne))
= AtB(h, ). (2.128)

2. Since (%) = n(i1) = 4* one gets q(i1) = /Oﬁ 2A* dA = 34° and
B2, ) = S(a") - (@) + (@)? - S(@)(a)
= 2@ + (@) - (@) @),
Jensen inequality (see Proposition A.4 in the Appendix) yields
((@— @n* = (@ - 2a(@) + (@)*)*)
<@ -2 + @)
= (@) = 2(0°) (@) + (0°)* — 2(@°) (@) + 4(2*)(a)*
= 2(0°) (@) + (0°)? - 2(a*) (@)* + (@*)°

=3(a%)? - (@) () + (a*)
= 3B(4% 0%).

3. The set of all convex functions 7(i) can be spanned by a family of the
linear combinations

P
cotll + Z ci(it — ki)>o,
o1

where wso = max{w,0} and ¢; > 0 fori = 1,...,p, see [Dafl6, p.178 f.].
So it suffices to check the condition for

() = (4 = k)xo
for arbitrary k € R or equivalently for

ne(@) = |4 — k|. (2.129)
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Similar by [Kru70, p. 240] the condition for the shock admissibility

n(a); +q(@); <0

to be fulfilled for arbitrary convex 7 is equivalent to it being fulfilled for
all 5 = |& — k|. So for this proof we assume that n has the form (2.129)
and check that q(4) = sign(@ — k) (f (@) — f(k)) + co, where ¢j is chosen
to be such that g(0) = 0 is the corresponding q with ¢’ = f’5’ such that

q(a) = /Oﬁ f'()n’(A) dA. For ¢ € D partial integration yields

[ a0’ di = / sign(i — k) (£(@) — £(k)¢’ () da

(o)

k
. / (F(@) - F(R))¢' (3) di
+ /k (F(@) - k)¢’ (@) di
k )
- / F/(@)p(a) di - /k F(@)p(a) di
_ / sign(@ — k) £ (2) (@) da
. / 7 (@) (@) (4)

such that ¢’ = f’n’. The constant ¢y does not change the bilinear form
since

(a(co +q)) — (@) (co + q) = (iq) + coa) — (@)(q) — co(i2)
= (aq) — (@){q).

So without loss of generality we assume ¢y = 0, get

f@ - fk) = f')(@-k) =0 (2.130)

by convexity of f and calculate
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B(f.n) = (4 — k) sign(a — k) (f(2) - f(k))) = (|a - k| (f (@) = f(k)))
+(f(@) — f(k)){|d - kI)
— (4 — k)(sign(a — k) (f (@) — f(k)))
= (f(@) - f(k))|a - k|) = (& — k)(sign(d — k) (f (@) — f(k)))
= (f(@) - f(k))|a - kI) — (& — k)(sign(@ — k) (f (@) — f(k)))
= f ()@ —k)la - kl) + f' (k)@ — k)(sign(a - k) (& - k))
= (f(@) - f(k) - f'(k) (@ - k)){|@ - k)
— (@ - k)(sign(@ — k) (f (@) — f(k) - f'(k) (@ - k)))
> (f(a) - f(k) = f'(k) (@ - k)){|a — k)
= (la — kI)Isign(@ — k) (f(@) - f(k) - f'(k)(@ - k))])
=(f(@) - f(k) - f'(k)(@ —k)){|a - k)
= (la = kI}If (@) = f(k) = f(k)(@ - k)[)

(2.130

EV (@) - £ - £ = R) i — KI)
= (la = k[){f(@) - f(k) = f'(k) (i - k))
=0.

4. We consider fi(@) := f(2) — ci? and n; (@) := n(#) — cd?, which are convex
by assumption. Hence by Inequality (2.125) one has B(fi,n1), B(fi, 4?),
B(@#% n1) > 0 and

B(f,n) = B(fi + ci, gy + ci?)
CED B(fi,m) + B(fi, cit?) + B(ct?, ny) + B(cil, cii?)
(21225) B(cftz, ch)
(2.1:28) CZB(ﬁz, ﬁz)

L - .
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With this we can now show that for @, which fulfills (BE), (EC.), hisa
viscosity solution of the corresponding Hamilton-Jacobi equation.

» Theorem 2.19.
Let Q C R? be open. If 4 € Lﬁ)c(Q) satisfies

-2
0; + (”—) -0, (BE)
2 x
i + i <[ (ECp)
2], \3).=F g
in D’(Q) with a non-negative Radon measure /I that fulfills
((B,(%,t
lim 2B &D) _ (2.131)
r—0 r
for all (%,1) € Q, then h with flf = —%2 and hy =i is a viscosity solution of
. R
h; + ?x =0. (2.132)
<
Proof.
Continuity

While in the proof of Theorem 2.16 we already showed that h is continuous, we
will prove it again in order to provide a rigorous proof for this more general

theorem. Testing
u? N o’ <

with a cut-off function (%), where 0 < ¢ < 1, suppy C [Xo, x1] for some %o,
x1 € R, ¥y =1 on [%y,%1] C [Xo,%1] and ¢ € C* yields
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/ /R(u_) V(%) didi - / / (@) ddi
:/ /R(ﬁ?z)g“’?) didt + / /R (ﬁ;)ﬁw(&) didi
<[ " [ aaced
e

([%0, %1] X [fo, tl])

such that Holder inequality (see Proposition A.2 in the Appendix) gives

/201; ¢(x) didi < p([20,%1] X [fo, 1] )+/ / L&) didt

o A “lap
< i([Fo, 2] X [l i)+ sup  [Ya(®)| / / 128 peat
#elfo.21] o Jx 3

@a2 o .
< ,u([x0ax1] X [tO: tl]) +c”u”z“([J?O,J?I]X[fo,fl])||1||L4([’%0”?1]X[50jl])

<c.
So [, 4*d# is locally bounded in time, implying jx" #2d% is bounded for all
X0, X1 € R such that

4 e L (R;LE (R)) (2.133)

N

and since hy = @

(R; WA(R)),

loc

hel®

loc

which via Sobolev embedding (see Proposition A.7 in the Appendix) yields

N - 0,1
he LlOC(R;CIOCZ (R)). (2.134)
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Since flf = —%ﬁz we get by (2.133)

r 1,00 7l
he Wi (R; L. (R))

loc

such that the Sobolev embedding implies

he P (R;LL (R)). (2.135)

C

Let { be a mollifier in space, i.e. { € D(R) with { > 0, fR {dx = 1 and
additionally supp C (—1,1), then for {.(X) = %{(f)

(%, £1) — h(z, )|
< |h(x, 1) = (A% {o) (%, 1)
+ (A x L) (% Br) = (A x L) (%, 1)
+|(hx (%, B2) — h(%, 1))
[ é@—ﬁﬁ@iﬁ—é@—ﬁﬁ@ﬁ)@‘

<

1 € AP oA N A .
+g/ {(%)’h(x—y,tl)—h(x—y,t2)|dy

+

/fgw—@ﬂam—a@—meMdﬂ

Rt b) — (g0
< oup oo gt BE) G
2

[#-g|<e |x — g

+ sup {(é)é‘[

zeR

h(% =9, 6) — h(% = 0, f2)

dy
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and by (2.135)

€
/|Mﬁ—am—h@—a5n@5cm—5

€

such that since supp{ < ¢

o ~ clt, — £ f -t
|h(%, 1) — h(2,F)| < ¢ sup |fc—g|5+M:c(e%+M).
|#-7]<e € €
Setting € = |f, —fl|% yields
Ih(%,1) — h(%, 1) < clfy — B3 (2.136)

locally in space such that
~ O,l o
he Clog (R;LIOC(R))’
implying
heLY(Q).
Combining (2.134) and (2.136) yields
(&1, B1) = A B)| < [A(GRL B = A B)| + R(R E2) = (R B2)]
< oIty = ol + %1~ 2l
and therefore one gets Holder continuity

~ 0,1 0,l
he s (RC (R)) (2.137)

A

of h.

Viscosity Subsolution
Next we show by mollification that h is a viscosity subsolution of
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Let {. be a mollifier in space-time, i.e. 0 < { € D(R?), fIRZ { d%dt = 1 and
L(%) = ig(ﬁ £) By definition

a2 K
ht:__ :—?

2

almost everywhere such that by Jensen inequality (see Proposition A.5 in the
Appendix)

- 1
0= (hf+5h§)*§e

2

. 1 . . oa . .
> hp k(e + 5(/ he(x — 9,1t — k) (9, k) dydk
R2
. 1 - )
=h; x (e + E(hx * L)
. 1 o«
= (h*x ) + 5((;1 * ge)fc)z,
where % is the convolution in space and time, implying that he = h* (cisa

classical subsolution. Classical subsolutions are viscosity subsolutions since if
he — & has a minimum at (%, ), then

& (%,1) = (he); (%, 1),
E:(%,1) = (he)e (%, D),
implying

0D + (D = Ry + S (2D <0

By (2.137) h is continuous such that h. = h % {e converges uniformly to h as
€ — 0 on every compact subset. Therefore by [CL83, Theorem 1.2] A is a viscosity
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subsolution of

Viscosity Supersolution
Next we prove that h is also a viscosity supersolution of

L1y,

hf + Eh)»c =0.
We have to prove that if A — £ has a minimum in (%o, o) for any smooth ¢,
then &; + %fi > 0 in (X, fy). For simplicity we assume that the minimum is in

(%0, o) = (0,0) with iAz(O, 0) — &£(0,0) = 0. Additionally we define

ge (Je’ f) = §(329 f) - GI(J’E’ f) Is

Q. s as the connected component of {()?, t) (fz —&)(% 1) < 5} that contains

(0,0), (-)e.s as the average over Q. s, i.e.

1 N
(fles = —— didi
f ) |QE,5| .Qe’g f

and write

f(e.6) £ g(e9) (2.138)

if there exist constants c1, ¢, > 0 such that f (¢, §) < c19(€, §) for e, 5 < ¢, similar
to < before.

First observe that since h is continuous and h — & has a minimum in (0, 0)
h—&> (h-€)(0,0)=0
in Q¢ s provided 9 is sufficiently small such that

h—&=h—E+el(i,2)] = (h—)(0,0) +e€l(% )] = €l (£, D),
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which yields
Qcs C {(;e, ) | el(%.D)] < 5} — B3 (0). (2.139)

If § is sufficiently small Qs is compactly contained in B;(0) such that

1 A N
— | (h-¢&); dxdi
|‘Q€,5| ~/Qe,5 § !

(fl = &e)i X{h-£.<8} dxdi

(h=E)i)es =

1Qesl JB,(0)
1 A o
= (h=& =08 Xijfr dxdt
|Q¢,51 JB, (0) S P X{h-t-5<0)
1 A .
= (min(h — & - 8,0)); dxdt,
|Q¢,51 JB, (0)
where ya(%,t) donates the characteristic function of A. his absolutely contin-
uous with respect to f since h; = —%ﬁz € leoc such that min(h — £ - §,0) is

also absolutely continuous and vanishes in a neighbourhood of 9By, so by the
fundamental theorem of calculus

((h=E)i)es = 0.

An analogous calculation shows that ((fl — &e)z)es = 0 since he=d€L* and

loc
therefore

g T L W e A R L
< >€’5 ) <h£>e,5 - <(h - ge)fc>e’5 ¥ <(§e),}>e)5 a <(§E)’A‘>e,5‘ (2.140)

Since ¢ is smooth |(&);| < |&;]| + € £ 1 such that

o=
< -

(@es 5 (1(E)iles $ 1 (2.141)

and Jensen inequality (see Proposition A.4 in the Appendix) yields

. (asg)
(ahls < (@)es 51,

implying (|i|)cs < 1. Similarly |(&)z| < |&| + € £ 1, which after combination
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with the previous results, yields

Bi-sa, =D, b
(h_'fe)fc €5 B hx (gex €5
4.0
ﬁ (éfé)x €0
<1 (2.142)

In return one gets

‘/-(25,5

( - 'fe)t
(h- &)
(h €e)i
(h- &)
(h— &
(h—&o)x

(min(h - & - 8,0));
(min(h - & - 8,0))z

Xi-e. <5 d%dE

dxdt = /
55
'/65

= |Q6,5|<

dxdit

>e,5

and by Sobolev embedding (see Proposition A.6 in the Appendix)

(2.142)
< |Qe,5|

~

oo (A6) (min(h — & = 8,0));| ,. ..
h—&—-6,0 < . dxdt 5 |Qcsl-
| min(h - & Mz s) /Q N(minGi - & - 5.0)); %di 5 1Qesl

Using Hoélder inequality we get for I(5) as defined in the following
1(6) = || min(h = & = 8,0)ll: (. »

a2 .
< [lmin(h = & = 8,0)|lz2 (0. 5) 11220 5)
. o7 1
= || min(h — & = 6,0) |22 5) 126512
< 19051 (2.143)
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and since V(f) = y(r»0}Vf almost everywhere

1(8) = / (& — h+8), dxdi

:/ / —(ffe—h+s)+ ds dxdt

:/ / Xz, h+s>o}d (fe—fl+5) ds dxdt

:/ / X0, ds dxdit
= / / ., dxdt ds
Qs

= / Q| ds. (2.144)
0

Combining Estimates (2.143) and (2.144) yields

3 d
16) 5 |95l = (%1@) ,

which after rewriting as

(@)

'* 1)

QN

implies

W

(510) ) a0 .
1% d51(5)) ) (T(a))i - %((1(5))3)'
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Therefore § can be estimated by
s 1
5= [ ds s )}
0

and because |, s| is non-decreasing in § we get
S S
5 210 = [ 100l ds<10usl [ ds= 0ol
0 0

implying
8 5 1Qcs). (2.145)

For § sufficiently small h— & > 0, which yields
—min(h-& —8,0) = —min(h—&,8) +5 < 8 (2.146)

and by definition h; = —142, he = @ such that
i o
34

<

<((h §e)t)

(h=£)s

o L)

o (ot -5 s) (1) s
g, minth- =000 + (5 s

(T”@a m«)A()J“w

(ECp) 0
|-Qe 6| ( ) 5)

<H
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2139)  §
< ﬁ(Bg)

|Qe,§|
(2.145) ﬁ(Bé)
< 56_ (2.147)

We use this estimate, Holder inequality (see Proposition A.2 in the Appendix)
and supg, (|Vé| < 1, since & is smooth, to calculate

~4 ~4
R ut u
(@")es 3 <—— + —>
€0

() ()

; i(B
%u2)>+u( 5)
1.3
3

@147 <(<§e>f) , (
~ (&e)s ] o
)il (s . Lie.
S (B v i)+ (5(m)
(2.131) 5 3 1
S (@es+ (|0 )es +

€
(A.2) ) 1, 1]
§ 1+ (<u2>e,6) 2 (<u4>e,5) 2+ E

Applying Cauchy inequality (see Proposition A.3 in the Appendix) we get

1 1 1
<ﬁ4>e,5 1+ (<ﬁ2>e,5) : (<ﬁ4>e,5) 2+ E

(A.3) 2 1 4 1
S 1+c(i >e,5 +—( >e,5 + -
c €

(2.141) 1., 1
S l4+c+—(@%)es+ - (2.148)
Cc €

for all ¢ > 0. Let ¢; be the constant specified in (2.138) for Estimate (2.148) and
set ¢ = 2¢; to get

1 1 1 1
(es < c1|1+2c) + —(@Hes + —) = ~(i*)es + cl(l +2¢ + —).
2cq € 2 €
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Subtracting %(ﬁ‘l)e,g yields

1 1 1 1
—(01*)es < cl(l +2¢1 + —) S1+-5 - (2.149)
2 € € €
Using Hoélder inequality, this implies
R A2 , 1 1
([aP)es < ((@%es) ((0h)es)?
(2.141) 4 1
S ((u >e,5) :
(2149)
< €. (2.150)
Having estimates for 42, 4° and using the definition of &, i.e.
56(3?’ f) = 5(32’ f) - El(J’(\', f)l’ (2151)
one gets
(e B
(ge)ff %aa €0 (55)55 €0 %QS €0
172
< Ebf > su ((‘fe)f)_<(§e)i>
< L) o) " \Eel
< ({2 ~13 3
= ((“ )es+ (Il >e,5)Q€,5°SC ((&);C)
(2.141),(2.150) L (¢ )A)
< 1+¢e 2)osc|| 2!
= ( )Qe,a ((?a)f
(2.151) . &
< 2 t
pS (1+e )(e+gi§ (§x) ) (2.152)

Since ¢ is smooth gsc|V§| < ¢ diam(€, 5), which because of Q. s C Bs(0) by
€6 €

(2.139) yields 8sc|V§ | £ ‘g and therefore
€,0
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(&) - (5o, - (&), {io).
(ge)x %ﬁ3 ) (gf)x €0 % ’ €6

(2.152) 1
< (1+€2(€+OSC( ))
65 §X
< (1+e‘5)(e+—). (2.153)
€

For the form B defined in Definition 2.17 we get

1 1
B(f,n) = B| =%, =4°
(fin) (2 5 )
142 142 142 142
u §u €,0 u €,0 gu €0

a3 ﬁ(B?) 5 1
(@ = (D)es)Des < B(fin) = +— +et. (2.154)
€2
Since ¢ is smooth and Q. 5 C Bs we calculate
1, 1 §
£1(0.0) + 3E40.0) = (E)ep — 5 ((Edes)’| S ose(&) + gse(El) 5 =
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Using Holder inequality and €* < € we finally arrive at

é
+ —
€

(Eides + 5 (Ees)”

£(0,0) + %éﬁ(o, 0)| £

5, 0
< +e+e +—
€

(Ees + 5 ((E)es)”
)

@

.140 S
2 +e+—
€

= @Pes+ 3 (@es)

e + 2040060 = (@) e+ 2

2N

(@)es = 2((@)es)” + (@es)’| + e+ é

1
2
.. . o
= ~[((@ = @)es)Pes| + €+ =
2 €
(A2) 1 R R 1 k)
S (@ = @es)es|® +e+ -

2 €
1
R 2
(2.154) IJ(Bg) )

1
S | ——+—+t€| +te+-
1) e €

such that for§ — 0

1
S€et+e

£1(0,0) + %gﬁ(o, 0)

by (2.131) and in the limit e — 0
)
gf(oa 0) + Eé‘:fc(o’ 0) =0,

implying hisa viscosity supersolution, which concludes the proof. ]

Now we show that being a viscosity solution of fz; + %hi = 0 implies that @
is an entropy solution of @; + dii; = 0.
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» Corollary 2.20.
The function 4 as defined in Theorem 2.19 is an entropy solution of

u; +uugy = 0.

Sketch of Proof.
By definition @ € Lﬁ)c(Q) and therefore Holder inequality (see Proposition A.2
in the Appendix) yields 2 € L} (£).

We now show that @ can only have decreasing jumps which implies the
necessary entropy condition. For simplicity we assume that & is smooth outside

of the jump set curve y = {(fc(f), t) | t> 0} and that it can only jump across this

curve. Let 4" be the value of % on the right and u™ be the value of 7 on the left
side of y and similar h*. Therefore we have to show that

Wt <a (2.155)

on y. Since h is continuous and may only jump across y, we get that h* are
classical solutions of A7 + %(h:—;) = 0 outside of y and h*(x(t),f) = h™ (x(1), 1)
for all £ > 0 such that

d - oo o o 2
—h*(x(),1) = —h™(%(D), 1),
S0, ) = k(DD
which yields the Rankine-Hugoniot condition
0= i(iﬁ(fc(f) B —h(2() f))
di ’ ’

= & () (A2 (R(0),B) — g (R(D). D)) + R (B, D) - 7 (R(D). D)

- ”(f)(ﬁt(;e(f), B - hz(£(D), f)) 1 (ﬁt(;e(f), f))2 - (fz?(;%(f), f))2 :
X X 2 X X
(2.156)
Fix T > 0 and X = £(T), then (X, T) € y- We will show
KX, T) < by (X, T) (2.157)
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by contradiction, so suppose
RL(X,T) > hp (X, T). (2.158)

For p € (ﬁ;(f( T),fz;(f(, f)) set

E#,1) = - (2(D), 1) + p(% — %(F)) (2.159)
such that
& (& 1) = (DA (L D,y 5y + by (D, D) = px’ (D),
E(x 1) =p (2.160)
and
h—&=h(k i) - b (2(), §) - p(x - £(D)).
Calculating

(h— & (D), 1) = h(x(),1) — b~ (2 (D), 1) - p(x(F) - %(F))
= h™(%(8), ) = h™(%(D), ) — p(&(D) - (D))
=0

shows that / — & is constant in y and, by
(h-8t=ht-p>0  (h-H;=h;-p<,

increasing when going to the left or right side of the jump set, implying that
h — & has a minimum in (X, T). Now calculate

R T+ 2B T)

P 2 (Dhp (R T) + by (R, T) = px (T) + 5
o AN a1
=3 (T)(p ~hZ(X, T)) +hy (X1) + 5p"
PN S B P T I
_% (T)(p hx(X,T)) z(hx(X,T)) + o (2.161)
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implying that the right-hand side of (2.161) vanishes for p = fz; (X, T) and also for
p= ﬁ; (X, T) because of the Rankine-Hugoniot condition (2.156). The right-hand
side is also strictly convex in p, which since ﬁ; (X , T) <p< ﬁ; (X , T), implies

A A 1 A A
GXD+S8XT) <0,

contradicting the assumption that hisa viscosity solution, since h- Ehasa
minimum in (X, T).

Therefore the assumption (2.158) is wrong and the claim (2.157) is proven.

Since fl;—; = 4™ this shows that @ can only have decreasing jumps and therefore

fulfills (2.155).

Based on [Daf16, Chapter 8.5] we translate (2.155) into the condition

—s(n(@*) —n(@")) +q(@*) —q(@") <0, (2.162)

where the shock speed s is given by

1@H?-@w@)? 1 1
@)= @)" 1o .- (2.163)
2 ut—-u" 2 2

Similar to the proof of part 3 in Lemma 2.18 it is sufficient to check (2.162) for
n(it) = (4 — k)»0, where w>o = max{w, 0} in order for the condition to hold for
every entropy-entropy flux pair. The corresponding q is given by

o1 .
q(a) = E)({ﬁ—kzo}(uz - k),
where y4 is the characteristic function of A. For k < 4" < 4~ one gets

~s(n(@*) = (@) + (@) - g()
=@+ ) (@ = K)o = (@ = K)a0)

+ %X{m—kzo}((bf’)z - k) - %X{ﬁ-—kzo}((ﬁ_)z - k%)
=t @ k- @ - 0) 4 S (@) - K) - @) - )
2 2 2
=0,
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forat <k <da"

—s(n(@*) = (@) + q(@*) - q(@)
= =@+ 8) (@ = K)o = (@ = K)a0)

1 R 1 .
+ 5X{ﬁ+—k20}((u+)2 -K*) - EX{ﬁ-—kzo}((u ) —k?)

S i) @ k) - (@)~ K
%(u va) (@ —k) - %(a— _ )@+ k)
=@ -K@ -k
<0

and for 4" < 4~ < k trivially q(4*) = 0 and n(4*) = 0, proving (2.162).
Since # is smooth outside of y the entropy condition is satisfied since

n(@); + q(@)z = n'(@)d; + q' (@) i
=n'(@) (4 + f'(@)dz)
= n' (@) (4; + ddz)
=0

by the definition of ¢’. Calculating

02 n(a); +q(@)s
=n' (D) +q' (0)ie
= —n'(@)dil + q' ()i
= (=n" @) f"(@) + q'(2)) iz
with f (@) = % shows that on the jump set curve y the condition is given by

0> (1) = @) f@) - @)  q(@) - (@)

.
ut—a- at—a- ut—a- ( w)

)2 — 2
—%(n(fﬁ) n(a” ))% + (q(@*) — q(27))

94



Viewing Kuramoto-Sivashinsky as a Perturbation of Burgers’ Equation

= —s(n(@") —n(@)) + (q(@*) - q(@)),

which is condition (2.162), that has already been proven to be fulfilled. ]

2.2.4 Energy Bound for Burgers’ Equation

Theorems 2.16 and 2.19 together with Corollary 2.20 show that the rescaled
solution of the Kuramoto-Sivashinsky equation fulfills

ﬁ; +diz = 0,
n(@); +q(@)z <0

in D*((0, ) x R) for every entropy-entropy flux pair. Choosing this pair to be

we get a bound of type

/ 2(2.1) di < O(i?).

» Lemma 2.21 (Energy Bound for Burgers’ Equation).
Leti € L140C((0, o) X R) be a solution of

U; + tig = 0, (BE)
(%az)i + (%a?’)i <0 (ECo)
in D*((0, ) x R) with 1-periodicity condition

a(%,1) = a(x+1,1) (PCy)
for all £ € R and £ > 0 and initial condition
(%, 0) = do(X), (IC)

where the initial data is chosen to match the 1-periodicity, to be locally square-
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integrable and have zero mean, i.e.

o (%) = do(X +1),

1
/’ﬁd@dﬁza
0

iy € L*(0,1) (2.164)

for all x € R. Then there exists a universal constant ¢y > 0 such that

1 Co
‘/ﬁ@ﬂ&sg
0 t

for all £ > 0. <
Proof. R
Until now h is only defined through

hi\ _ (-38°

(fzf) = ( 2. (2.165)

leaving us the choice of an additive constant. We define ho (x) = fl(fc, 0) and set
the constant such that

sup ho(%) = 0. (2.166)
x€[0,1]
Using these definitions and Hoélder inequality (see Proposition A.2 in the Ap-
pendix), the calculation

1
o o\ 2 (2.165) A
—(/ u(z) dx) = —|l(ho)xllzz(o.17)

(A.2) o .
< —/ \(ho)s] ds
0

< —| sup fzo(f)— inf ﬁo(f)
%€[0,1] x€l0,1]
CL9 inf k(%)

x€[0,1]

< ho(%)
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< sup ho(%)
x€[0,1]

el (2.167)

implies
A . i N (2.165) ¢ 1, A (2.167)
h(:%,t):/ hi(%,7) di + ho(%) = —/ SE(% ) di+hy(%) <0,
0 0
(2.168)

so that not only A is not merely non-positive for ¢ = 0 but rather for all t. Since

4l is 1-periodic so is A, so that by partial integration and the entropy condition
(ECy) we get

for arbitrary T > 0. Similarly to Lemma 2.10, the Burgers’ equation is also
translation invariant. Using this and the fact that T was arbitrary we get

3
/ /ﬁ“ dxdi < 6(/ 0% (%, $) dfc) (2.169)
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for all § > 0. Defining

£(5) :=/§m/a4 dxdt (2.170)

£ =- / i (2.9) dt, 2.171)

and calculating

we get the differential inequality

£(5) = / it didi
>s 2

(2.169 ) 2
< 6 / 02(%,9) dx

(A2) 33
< 6l 8117,

4
= 6(/ a4(%, %) d;e)
@17

2V 6(-f(5))}

such that

< _{,(g) (2.172)
fi()

[SIEN

6

and therefore

7(8) (2.172)
1f6) e

(o) =374 = o =e

Integrating this yields

IO
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so that

/ /u dxdt f(s) < — (2.173)

Via Burgers’ equation and the periodicity of & we get

i T ") A(ECU)_E .3 A__%AS
p” udx—‘/(u)fdx < 3/(u)£dx— 3u

such that f #? d% is non-increasing in time and therefore

2 1 25 2
(/ 0% (%, 28) da?) = E/ (/ 0 (%, 28) d;%) di

2

1 B .
= / ( / 0% (%, 1) da‘c) di
S Js

a2 1 2
M WD g

/ /u dxdi
< - / / * dxdt
S
) ¢

(2. 173

.

INS

S
Since this holds for all § > 0 we conclude

WA AN ga c_C
/u(x,t)dxs4f—2—f2.
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2.2.5 Energy Bounds for the Kuramoto-Sivashinsky Equation

Having derived a bound for 4, the rescaled solution of the Kuramoto-Sivashinsky
equation, we can now translate this back to the original solution.

» Corollary 2.22.
Let u be a solution of (KS), (PCy), with initial condition (IC). Then for all T > 2
there exists a Lo(T) such that for all L > L,

t L3
[_1 / u2 dxdt < m (2175)

holds for all t € (2, T]. <

Proof.

We prove this lemma by contradiction. Assume there exists T > 2 such that
for all v € N there exists L, and a solution u, of the L,-periodic initial value
problem (KS,), (PCy,), (IC,) such that L, — oo and

ty L3
/t_I/ui dxdt>crv1)z (2.176)

for all constants ¢ > 0 and some t, € (2, T]. Then this also holds for ¢ = ¢, as
in Lemma 2.21. Since t, is a bounded sequence, there exists a subsequence t,,,
which we can relabel as t,, and t € [2, T] such that t, — t. The rescaling (2.90)
and the convergence (2.123) imply

1 . .
av(t:f) = _uV(tﬁLVJe) - a(t9-7%)
Ly,
in L;‘OC((O, o) X [0,1]). Holder inequality (see Proposition A.2 in the Appendix)
yields

”ﬁv _ﬁ”zz
L
loc

= 112y - )%l
ocC

A2)
N N2
< e Il = @)

< C||ﬁv - aHIZ}

loc
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such that

A oA

1 . .
ﬁv(t:x) = L_uv(t:va) - ﬁ(tﬁ')e)

v

in leoc((O, ©0) X [0,1]). So on one hand by the assumption (2.176) we have

1 ty
/ /122 dxdt = lim/ /u‘z/ dxdt
-1 =0 S,
= lim —3/ /u dxdt
v—oo [, tv—l

> hmc—
v—00 0( £, —1)2

1

= Com. (2177)

By Theorem 2.16 # solves

in D*((0,00) x R). i = 14?2 fulfills (2.131) since for bounded A with B, C A the
Lebesgue measure L(A) of A is non-zero and therefore, because of i € LloC

B, 1 | A
M z—/ —i%(%, 1) dxdi
B, 4

r r

1 2 e
= 1°(%,t) dxdt djdt
4r£(A)/A/B,u(x’) xdt dydt
1 o e e
< —F—F dxdt dyd
_4r£(A)AAru(y,T) xdt dgdt
1 R
< dxdt | 4*(9,%) djdt
_4r-£(A)‘/B, x ‘/Au(yr) 9dt
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SAPAE
4.[:(A) L2(A)

r—0
—_—

So by Corollary 2.20 # is an entropy solution of Burgers’ equation, which implies
that it fulfills the requirements of Lemma 2.21. Applying Lemma 2.21 we find

N C
/ 32(%,1) d& < t—g (2.178)

and therefore

(2.178) t 1 1 1
/ / dxdt < co/ —dt =co (— - :) =co=——= . (2.179)
o1 12 P-1 1 H(f—1)

Since t € [2,T] we have

F-12=F-FT-T+1<Hi-1) (2.180)

such that by (2.177) and (2.179) we get the following contradiction

‘ . (2.179) 1 (2.180) 1 ey ft .
/ / 0% dxdt < COT < ¢q—— < / / Tk dxdt,
-1 t(t-1) (t—1)* -1

which concludes the proof. ]

» Corollary 2.23.

There exists a universal constant ¢ > 0 such that for all T > 0 there exists Lo(T)
such that for all L > L, and any solution u of (KS), (PCy) with initial condition
(IC)

L L3
/ u?(x,t) dx < ¢ (2.181)
0

holds for all t € [0, T]. <
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Proof.
For t < 2 we have by the initial layer estimate (see Lemma 2.14)

(2.60) 1 5 I
/uz(x, t)ydx < cL3(1 + t_2) < CL3t_2 < ct—z.
For t > 2 we have
4(t -1 =2 +3t2 -8t +4=t"+ (3t -2)(t —2) > t* (2.182)

such that by Inequality (2.31) and Corollary 2.22 we get the claim as

/uz(x, t) dx:[tl/uz(x, t) dxds

t

< sup /uz(x, 7) dxds

t—1 r€(s,t)

(231) 1,
< / etZ/uz(x,s) dxds
-1
Lot
SeZ/ /uz(x,s) dxds
-1
L3

(2.175)

(t— 1)
(2.182) I3
S —.
S

By translation invariance in time we can extend this to large times.

» Corollary 2.24.
There exists a universal constant ¢ > 0 such that for all T > 0 there exists Lo(T)
such that for any solution u of (KS), (PCy) with initial condition (IC)

L 3
L
sup‘/0 u?(x,t) dx < 5ﬁ (2.183)

t>T

holds for all L > L. |
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Proof.

By translation invariance in time (see Lemma 2.10) Corollary 2.23 also applies to

v(x,t) =u(x,t+7).Soforallx >0and r =« + % andt € [%,T] one gets

(2.181) I3 L3
/u2(x,t+r) dx = /vz(x,t) dx < ¢— <¢—
t T
and by the choice of 7

L3
/ uz(x, f)dx < ¢—
T

fort € [%+T,T+T] = [K+T,K+%T]. For all t > T we find k such that
tE[K+T,K+%T] so that

LS
sup/ u?(x,t) dx < Eﬁ'

t>T
|
Now we can prove the bound claimed in (1.3) and (1.15).
» Corollary 2.25.
Let u solves (KS), (PCy), (IC), then
lim sup |[ullz2[—o,1] < o(L%).
t—oo
<

Proof.
Corollary 2.24 yields the claim since

2
Llim L% lim sup [[ullg2[—or] = Llim L% lim sup(/ u’(x, 1) dx)

t—o00 t—o00

\ 2
= lim L2 lim sup(/ u’(x, t) dx)

L—o T—o0 +>T



1
(2.183) s _L3)\?
< lim L2 lim|c—=

L—oco T—oo TZ

o1

. . c2

= lim lim —

L—o00 T—oo

=0.
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Appendix

» Definition A.1 (Fractional Derivative).
Based on [Ott09, Definition 2] we define for « € R the a-fractional derivative
|0x|%u of u via its Fourier series @ through

[oxl#u(q) = lg|“a(q). (A1)
|

Some useful identities that can be found in Evans’ Partial Differential Equations
[Eva98].

» Proposition A.2 (Holder Inequality).
For%+é= L1<pg<oo, felP(U)andg e LI(U)

Wfgller @y < fllze @) llgllza ) - (A.2)

» Proposition A.3 (Cauchy Inequality).
Fora,b e Randallc >0

1
2ab < ca® + —b*. (A.3)

c

» Proposition A.4 (Jensen Inequality for Bounded Domains).
Assume f : R — R is convex and U € R" is open and bounded. Letu : U — R
be summable, then

1 1
f(m /U udx) < 50 /U f(w) dx. (a.9)

<
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» Proposition A.5 (Jensen Inequality for Unbounded Domains).
Assume f : R — R is convex, U ¢ R" is open and p > 0 such that /Up =1,
then

f(/U ep dX) S/Uf(fp)p dx. (A.5)

<

» Proposition A.6 (Gagliardo-Nirenberg Type Sobolev embedding).
Let U be an open subset of R”. Assume 1 < p < nand u € Wol’p(U), then

* *x _ hp . .
u € L, where p* = p and there exists a constant ¢, only depending on p and
n, such that
lullpe g < ellDullirw). (A6)
<

> Proposition A.7 (Morrey Type Sobolev embedding).

Let U be a bounded, open subset of R” with C! boundary. Assume n < p < oo
and u € WP (U), then, after possibly being redefined on a measure zero subset,
u € C®'"» and there exists a constant ¢, only depending on p, n and U, such that

Il o g, < clulbwrs o). (A7)
<

» Proposition A.8 (Arzela-Ascoli theorem).
Suppose fi is a sequence of uniformly equicontinuous, real-valued functions
defined on R" and there exists a constant ¢ such that

(o)l < ¢

for all k and x € R”, then there exists a subsequence fi; and a continuous
function f such that

fo, = f (A.8)

uniformly on compact subsets of R”. <



» Proposition A.9 (Differential Gronwall Inequality).
For a absolutely continuous function > 0 on [0, T] that satisfies

n'(t) < e(On(t) + ¢ (1)
with non-negative, summable functions ¢, on [0, T]
, ¢
n(t) < elo ©(s) ds (77(0) +/ U(s) ds) (A.9)
0
holds for all t € [0, T]. <

Similar to the proof of Proposition A.9 in [Eva98] we prove another version
of Gronwall Inequality for not necessary non-negative ¢.

» Proposition A.10 (Differential Grénwall Inequality).
For a absolutely continuous function > 0 on [0, T] that satisfies

n'(t) < e(t)n(t) + (1)

with summable functions ¢, { on [0, T], where ¢ is non-negative

t ¢ s
n(t) < eh 0O ds(ly(O) + / e~ 0 dry () ds (A.10)
0
holds for all t € [0, T]. <
Proof.
Calculating

L (n(sre o0 dr) = 0 4 () — g(s)n(s)) < ek PO Ay s)

fora.e. 0 < s < T implies

U(t)e_fotqa(r) dr _ n(0) + ‘/Of %(U(s)e_/os‘/’(r) dr)ds

<7(0) + /0 ek o0 dry )
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for all 0 < t < T such that

n(t) < e 0 ('7(0) + / L ke dry () gs).
0
|

The following compactness theorems can be found in Brezis’ Functional Anal-
ysis, Sobolev Spaces and Partial Differential Equations [Brel1, Theorem 3.18 and
Corollary 3.30].

> Proposition A.11 (Sequential Weak Compactness).
Every bounded sequence in a reflexive Banach space has a weakly converging
subsequence. <

» Proposition A.12 (Sequential Weak Star Compactness).
Every bounded sequence in the dual of a separable Banach space has a weak star
convergent subsequence. <
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