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Abstract
We consider two-dimensional Rayleigh–Bénard convection with Navier-slip
and fixed temperature boundary conditions at the two horizontal rough walls
described by the height function h. We prove rigorous upper bounds on the
Nusselt number Nu which capture the dependence on the curvature of the
boundary κ and the (non-constant) friction coefficient α explicitly. If h ∈W2,∞

and κ satisfies a smallness condition with respect to α, we find

Nu≲ Ra
1
2 + ∥κ∥∞ ,

where Ra is the Rayleigh number, which agrees with the predicted Spiegel–
Kraichnan scaling when κ= 0. This bound is obtained via local regularity
estimates in a small strip at the boundary. When h ∈W3,∞, the functions κ and
α are sufficiently small in L∞ and the Prandtl number Pr is sufficiently large,
we prove upper bounds using the background field method, which interpolate
between Ra

1
2 and Ra

5
12 with non-trivial dependence on α and κ. These bounds

agree with the result in Drivas et al (2022 Phil. Trans. R. Soc.A 380 20210025)
for flat boundaries and constant friction coefficient. Furthermore, in the regime
Pr⩾ Ra

5
7 , we improve the Ra

1
2 -upper bound, showing

Nu≲α,κ Ra
3
7 ,
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where ≲α,κ hides an additional dependency of the implicit constant on α and
κ.
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1. Introduction

In this paper we deal with the Rayleigh–Bénard convection problem, modelled by the
Boussinesq system for the velocity field u= (u1,u2) ∈ R2, the scalar temperature field T and
pressure p

1
Pr

(ut+ u ·∇u)−∆u+∇p= RaTe2 (NS)

∇· u= 0 (DF)

Tt+ u ·∇T−∆T= 0 (AD)

set in the regular and bounded domain

Ω=
{
(y1,y2) ∈ R2 | 0< y1 < Γ,h(y1)< y2 < 1+ h(y1)

}
where h describes the height of the bottom boundary and e2 = (0,1). We define the initial data
by u0(y1,y2) = u(y1,y2, t)|t=0 and T0(y1,y2) = T(y1,y2, t)|t=0. The nondimensional numbers
Pr and Ra are the Prandtl and Rayleigh number respectively. For a physical definition of these
numbers see (91) and (92) in the appendix. We assume periodicity of all variables in the e1 =
(1,0)-direction and impose

T= 1 on γ−

T= 0 on γ+
(1)

where γ− = {(y1,y2) ∈ R2 | 0< y1 < Γ,y2 = h(y1)} and γ+ = {(y1,y2) ∈ R2 | 0< y1 <
Γ,y2 = 1+ h(y1)} are the bottom and top boundary respectively. Our analysis wants to cap-
ture the role of geometry and boundary conditions in the scaling laws for the Nusselt number
Nu, defined as

Nu= limsup
t→∞

1
t

ˆ t

0

1
|Ω|

ˆ
γ−
n ·∇TdSdt . (2)

For a physical motivation of this definition of the Nusselt number between rough boundaries
we refer to [GD16] (section 3). In the last thirty years, the problem of deriving scaling laws
for the Nusselt number in turbulent convection between two horizontal plates has been highly
investigated both in experiments and numerical studies (see [AGL09, CS12]. and references
therein).

Intentionally, we did not yet specify the boundary conditions for u at γ+ and γ−. Before
doing that, we recall some important results concerning the scaling of the Nusselt number
under no-slip boundary conditions, which are the most studied for this problem. The no-slip
boundary conditions in the case of flat boundaries (i.e. h= 0) read

u1 = 0, u2 = 0 at y2 = {0,1} .

2
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In this setting, Doering and Constantin in 1996 [DC96] rigorously proved the upper bound
Nu≲ Ra

1
2 in three-dimensions. From this seminal result, many works followed aiming at

optimizing the Ra
1
2 -upper bound (see [Nob23, FAW22] and references therein).

In the infinite Prandtl number setting, a series of works [CD99, DOR06, OS11] established
the bound Nu≲ Ra

1
3 up to a logarithmic correction using the background field method. This

method, based on the decomposition of the temperature T into a steady background profile τ
and fluctuations around it, converts the problem of finding upper bounds for theNusselt number
into a variational problem: finding the background profile τ with minimal Dirichlet energy,
satisfying a certain spectral condition. The limitation of this method in producing the optimal
bound for theNusselt numberwas shown in [NO17]. The best bound for theNusselt number for
the Rayleigh–Bénard convection under no-slip conditions and Pr=∞ is Nu≲ (Raln lnRa)

1
3

[OS11] and is derived by combining the background fieldmethodwith a delicate PDE analysis.
In the finite Prandtl number case, Choffrut, Otto and the second author of this paper in

[CNO16] improved the perturbative result of Wang [Wan08] showing Nu≲ (RalnRa)
1
3 for

Pr≳ (RalnRa)
1
3 and the crossover to the bound Nu≲ (Pr−1RalnRa)

1
2 for Pr≲ (RalnRa)

1
3 .

The question around the ‘ultimate regime’ in the Rayleigh–Bénard convection problem
was recently object of animated discussions [Doe20] and it remains unclear whether at large
Rayleigh number the scaling Nu∼ Ra

1
2 will prevail over the scaling Nu∼ Ra

1
3 or whether

another scaling arises. For physical heuristics of the Kraichnan–Spiegel scaling Nu∼ Ra
1
2

and the Malkus scaling Nu∼ Ra
1
3 we refer the reader to section 2.1 in [Nob23].

The methods proposed by Doering and Constantin in the nineties to produce bounds for the
Nusselt number in boundary-driven convection continues to be fruitfully employed in other
problems like ‘wall-to-wall optimal transport’ [Tob22], Rayleigh–Bénard convection with
rotation [DC01], Bénard–Marangoni convection [FNW20] and internal heating [Ars+21] (see
also [Gol16] and references therein). On a related note, let us mention that recently remark-
able results have been achieved in the optimal designs for enstrophy-constrained transport
[DT19, Kum].

The no-slip boundary conditions are the most used in theoretical and numerical studies, but
whether or not they represent the most ‘realistic’ conditions, is subject to debate (see [Nob23]
and references therein). In 2011 Doering and Whitehead [WD11] remarkably proved Nu≲
Ra

5
12 in the two-dimensional Rayleigh–Bénard convection problem between flat horizontal

boundaries, with free-slip boundary conditions, i.e.

u2 = 0 and ∂2u1 = 0 at y2 = {0,1} .

This result rules out the Nu∼ Ra
1
2 scaling in this setting. But the question about the optimality

of this upper bound remains along with the question whether the scaling Nu∼ Ra
5
12 carries a

physical meaning. Motivated by this result, in [DNN22] Drivas, Nguyen and the second author
of this paper considered the two-dimensional Rayleigh–Bénard convection problem with the
following conditions on the horizontal plates:

u2 = 0 and ∂2u1 =
1
Ls
u1 at y2 = {0,1} , (3)

where Ls is the (constant) ‘slip-length’. Under these assumptions the authors proved the inter-
polation bound

Nu≲ Ra
5
12 +

1
L2s

Ra
1
2 in the regime Pr≳ 1

L2s
Ra

3
4 .

3
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Figure 1. Illustration of the Rayleigh–Bénard convection problem with Navier-slip
boundary conditions and rough boundaries considered in this paper: (NS), (DF), (AD),
(1) and (4).

Relatively few theoretical works have addressed the problem of the Nusselt number scaling
in the case of rough boundaries in Rayleigh–Bénard convection: in [SW11] Shishkina and
Wagner developed an analytical model to estimate the Nusselt number deviations caused by
the wall roughness and in [WS15] the same authors performed direct numerical simulations.
In [GD16] Goluskin and Doering considered the three-dimensional Rayleigh–Bénard problem
between rough boundaries. In particular, under the assumption that the profile h (which may
differ at the top and bottom boundaries) is a continuous and piecewise differentiable function
of the horizontal coordinates and has squared-integrable gradients, the authors showed Nu≲
C(∥∇h∥22)Ra

1
2 .

The boundary conditions in (3) are the simplified version of the original Navier-slip bound-
ary conditions [Nav23]

τ ·Du · n+αuτ = 0 on γ+ ∪ γ−,

u · n= 0 on γ+ ∪ γ−.
(4)

Here we denoted with n and τ the outward unit normal and tangential vector to the boundary
respectively, with uτ = u · τ the tangential velocity and with Duij = 1

2 (∂i uj+ ∂jui) the strain
tensor. The space-dependent function α⩾ 0 is the friction coefficient and measures the tend-
ency of the fluid to slip on the boundary. It may vary along γ− and γ+. The problem is illus-
trated in figure 1. We notice that the Navier-slip boundary conditions have been studied in
a variety of problems in fluid mechanics. They have been considered in problems related to
mixing [HW18] as well as rotating systems [DG17]. In [AEG21] and [Ace+19] the authors
studied the Stokes operator with Navier-slip boundary conditions and the convergence to no-
slip boundary conditions as α→∞.

In this paper we want to generalize the result in [DNN22], considering the original Navier-
slip boundary conditions (4), hence allowing a non-constant (space dependent) friction coef-
ficient. Furthermore, we allow a certain degree of roughness at the upper and lower plates,

4
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characterized by the curvature κ, defined as d
dλτ = κn, where λ is the parameterization of the

boundary by arc length and related to the height function via

κ(x1) =± h ′ ′ (x1)(
1+(h ′ (x1))

2
) 3

2

on γ±. (5)

Our first, more general result is the following.

Theorem 1.1. Let u and T solve system (NS), (DF) and (AD), with boundary conditions (1)
and (4). Assume h ∈W2,∞[0,Γ], u0 ∈ L2, α> 0 and κ satisfies

|κ|⩽ 2α+
1

4
√
1+(h ′)

2
min

{
1,
√
α
}

(6)

pointwise almost everywhere on γ− ∪ γ+. Then there exists a constant C> 0 depending only
on ∥h ′∥∞ and |Ω| such that

Nu⩽ C
(
Ra

1
2 + ∥κ∥∞

)
(7)

for all Ra⩾ 1.

This upper bound catches the classical Kraichnan–Spiegel scaling Ra
1
2 and is uniform in the

Prandtl number. The novelty of this (expected) result is to show explicitly the role played by
the functions α and κ in the bound.We notice that the bound holds under assumption (6) which
relates the magnitude of |κ| and α. Since κ changes sign, this assumption is crucial to obtain
the energy decay estimate (see lemma 3.3). As we can see from (7), the bound deteriorates as
roughness (quantified by ∥κ∥∞) increases. As already remarked, the upper bound in theorem
1.1 seems to indicate the Kraichnan–Spiegel scaling law. However, we are neither able to
confirm nor rule out this possibility as we can only produce upper bounds with our methods.
In order to confirm the power 1

2 of Ra in the scaling law, we would need to either derive lower
bounds or provide an example of a flow that saturates the bound. Interestingly, in [Zhu+17],
by means of direct numerical simulations, the authors are able to detect two regimes for two-
dimensional Rayleigh–Bénard convection over sinusoidal rough plates (varying height and
wavelength of the rough elements) and no-slip conditions: in the first regime (up to Ra∼ 109)
data confirm the exponent 1

2 . Letting Ra grow further (between Ra∼ 1010 and Ra∼ 1012) the
data seem to be consistent with the exponent 1

3 (see figure 2 in [Zhu+17]). As the authors in
[Zhu+17] discuss, this picture is counterintuitive, as the system is supposed to become more
bulk-dominated increasing Ra. Nevertheless, our bounds do not rule out this possible intriguing
picture, that the authors in [Zhu+17] interpret as given by a ‘reverse role of boundary layer
and bulk in the presence of roughness’. Let us remark that in this paper we focus on Navier-slip
boundary conditions, but the bound in theorem 1.1 would also hold under no-slip boundary
conditions (see remark 4.1). This result is not included in our paper since an upper bound
catching the Ra

1
2 -scaling was already rigorously proven by Goluskin and Doering [GD16] for

H1-rough surfaces and no-slip boundary conditions.
The physical prediction based on experiments [Roc20] is that roughness enhances heat

transport and, in turn, increases the value of the Nusselt number. Interestingly the following
theorem shows that, in the regime of large Pr, if we assume higher regularity of the height func-
tion (loosely speaking this would mean that the surface is ‘less rough’), we obtain a (strictly
smaller) bound Nu≲ Ra

3
7 . This would rule out the Kraichnan–Spiegel ultimate regime.

5
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Theorem 1.2. Let u and T solve the system (NS), (DF) and (AD), with boundary conditions (1)
and (4). Let h ∈W3,∞[0,Γ], α ∈W1,∞(γ− ∪ γ+) and u0 ∈W1,r(Ω) for some r> 2. Set α :=
minγ−∪γ+ α > 0. Then there exists a constant 0< C̄< 1 such that for all α and κ with

∥α+κ∥∞ ⩽ C̄ (8)

the following bounds on the Nusselt number hold:

1. If |κ|⩽ α on γ− ∪ γ+, Pr⩾ α− 3
2Ra

3
4 and Ra−

1
2 ⩽ α then

Nu⩽ C 1
2
∥α+κ∥2W1,∞Ra

1
2 +C 5

12
Ra

5
12 . (9)

2. If |κ|⩽ 2α+ 1
4
√

1+(h ′)2

√
α on γ− ∪ γ+, Pr⩾ α− 3

2Ra
3
4 and Ra−1 ⩽ α then

Nu⩽ C 1
2

√
α∥α+κ∥2W1,∞Ra

1
2 +C 5

12
α− 1

12Ra
5
12 . (10)

3. If |κ|⩽ 2α+ 1
4
√

1+(h ′)2

√
α on γ− ∪ γ+ and Pr⩾ Ra

5
7 then

Nu⩽ C 3
7
Ra

3
7 . (11)

The constants are given by

C 1
2
= C

(
1+ ∥u0∥2W1,r

)−1

C 5
12
= C(∥u0∥W1,r + ∥α̇∥∞ + ∥κ̇∥∞ + 1)

1
3

C 3
7
= C

(
∥α+κ∥2W1,∞ +α− 1

2 +α− 1
6 (∥u0∥W1,r + ∥α̇∥∞ + ∥κ̇∥∞ + 1)

1
3

)
,

where α̇ and κ̇ are the derivatives of α and κ along the boundary and C> 0 denotes a constant
depending only on the size of the domain |Ω|, ∥h ′∥∞ and r.

First of all, we notice that our results in theorems 1.1 and 1.2 also cover the case of flat-
boundaries and generic friction coefficient α. In fact, all results (i.e. (7) and (9)–(11)) hold
setting κ= 0.

We observe that theorem 1.2 only holds under the smallness assumption (8), while there
is no such restriction in theorem 1.1. If κ and α are big, and related through (6), then the
bound (7) holds.

Also note that theorem 1.2 requires the rather restrictive assumption h ∈W3,∞ to ensure κ ∈
W1,∞, while theorem 1.1 assumes h ∈W2,∞. The latter assumption is needed to control κ ∈
L∞ due to the boundary term arising in the energy balance (20), while the former is necessary
to get higher order estimates as can be seen in lemma 3.6 or when estimating the terms arising
from the vorticity balance in (75).

The interpolation bound (9) coincides with the result in [DNN22], when κ= 0 and α= 1
Ls
.

The main advantage of the interpolation results (9) and (10) is in the regime of small ∥α∥W1,∞

and ∥κ∥W1,∞ . In fact, notice that if ∥κ∥W1,∞ ∼ Ra−ν and ∥α∥W1,∞ ∼ Ra−µ (for a physical
motivation of this scaling see the appendix A.2.1), then (9) translates into

Nu≲
{
Ra−2µ+ 1

2 if µ < 1
24

Ra
5
12 if 1

24 ⩽ µ < 1
2

6
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and ν ⩾ µ. This means that the best bound is achieved in the case 1
24 ⩽ µ < 1

2 and Pr≳
Ra

3
2µ+

3
4 . Notice that, while (9) holds only under the assumption |κ|⩽ α, the upper bound (10)

holds under the weaker assumption |κ|⩽ 2α+ 1
4
√

1+(h ′)2

√
α on γ− ∪ γ+, allowing |κ|> α

especially when α and |κ| are very small. We observe that in the regime of small α and κ, say
∥α∥W1,∞ ,∥κ∥W1,∞ ⩽ 1, the constant C 5

12
becomes independent of α and κ. Finally we remark

that if the condition Ra−1 ⩽ α for (10) is violated, then (7) yields a stricter bound.
Interestingly (11) improves the upper bound (7) in the case of small ∥α+κ∥∞ and big

Pr, i.e. Pr⩾ Ra
5
7 . While the interpolation bound (9) yields a better result if α∼ Ra−µ, (11)

provides the sharpest bound if α and κ are independent of Ra. Notice that, differently from the
constant prefactor in (7), the constant C 3

7
also depends on α and κ.

2. Preliminaries

We start with introducing some notation and facts we will use in the whole paper. We will
often use that the tangential vector to the boundary τ can be written as τ = n⊥ = (−n2,n1),
where n is outward unit normal and uτ = u · τ . The curvature of the boundaries κ is given by
d
dλτ = κn, where λ is the parameterization of the boundaries by arc length in τ -direction. The
problem is illustrated in figure 1.

We will use the following notation to denote space-time averages

⟨ f⟩= limsup
t→∞

1
t

ˆ t

0

1
|Ω|

ˆ
Ω

f dy dt,

⟨ f⟩γ− = limsup
t→∞

1
t

ˆ t

0

1
|Ω|

ˆ
γ−
f dS dt,

⟨ f⟩γ−∪γ+ = limsup
t→∞

1
t

ˆ t

0

1
|Ω|

ˆ
γ−∪γ+

f dS dt.

Moreover, on the set

γ (x2) = {(y1,y2) | 0< y1 < Γ,y2 = h(y1)+ x2} , (12)

where 0⩽ x2 ⩽ 1, illustrated in figure 2, we define the average

⟨ f⟩γ(x2) = limsup
t→∞

1
t

ˆ t

0

1
|Ω|

ˆ
γ(x2)

f dSdt.

In what follows we will consider 0⩽ T0 ⩽ 1, implying

∥T∥∞ ⩽ 1 (13)

for all times t> 0, by the maximum principle for the temperature.
We redefine the Nusselt number (see (2)) adopting the more compact brackets notation:

Definition 2.1. The Nusselt number is defined as

Nu= ⟨n ·∇T⟩γ− . (14)

This number admits other equivalent representations that will be useful in our future
arguments.

7
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Figure 2. Illustrations of γ(x2), Ω̃(x2) and Ω⋆(z).

Proposition 2.1. The Nusselt number satisfies

Nu= ⟨|∇T|2⟩ (15)

= ⟨(uT−∇T) · n+⟩γ(x2) (16)

⩾ 1
1+maxh−minh

⟨(u2 − ∂2)T⟩ . (17)

where n+ is the normal at the curve γ(x2) pointing in the same direction as n on γ+, illustrated
in figure 2.

Proof. Argument for (15): testing the temperature equation with T, integrating by parts and
using the the divergence-free condition and the boundary conditions for T, we obtain

1
2
d
dt
∥T∥22 =−∥∇T∥22 +

ˆ
γ−
n ·∇T.

Taking the long-time averages and using (13), the maximum principle for the temperature, T
is universally bounded in time and we get

0= lim
t→∞

1
2t

1
|Ω|
(
∥T∥22 −∥T0∥22

)
=−⟨|∇T|2⟩+ ⟨n ·∇T⟩γ− .

Argument for (16): for 0⩽ x2 ⩽ 1, we define the sets

Ω̃(x2) =
{
(y1,y2) ∈ R2 | 0< y1 < Γ, h(y1)< y2 < h(y1)+ x2

}
, (18)

illustrated in figure 2, and integrate the equation for T, obtaining
ˆ
Ω̃(x2)

Tt =
ˆ
Ω̃(x2)

∇· (∇T− uT) =
ˆ
∂Ω̃(x2)

n · (∇T− uT)

=

ˆ
γ−
n− · (∇T− uT)+

ˆ
γ(x2)

n+ · (∇T− uT)

=

ˆ
γ−
n− ·∇T+

ˆ
γ(x2)

n+ · (∇T− uT)

where we used the incompressibility condition and that u · n= 0 at γ−. Taking the long-time
average we get

⟨n ·∇T⟩γ− = ⟨(uT−∇T) · n+⟩γ(x2).

In particular, from this identity we infer that the Nusselt number is independent of x2.

8
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Figure 3. Illustration of Ω⋆(z).

Argument for (17): let us define the set Ω⋆(z) = {y2 ⩽ z}∩Ω, as shown in figure 3, and
write
ˆ
∂Ω⋆(z)

n · (∇T− uT) =
ˆ
γ−∩{y2⩽z}

n− · (∇T− uT)+
ˆ
γ+∩{y2⩽z}

n+ · (∇T− uT)

+

ˆ
Ω∩{y2=z}

n+ · (∇T− uT) .

Integrate the previous equation in z between minh and 1+maxh and write
ˆ 1+maxh

minh

ˆ
∂Ω⋆(z)

n · (∇T− uT) dSdz= A+B+C,

where

A=

ˆ 1+maxh

minh

ˆ
γ−∩{y2⩽z}

n− · (∇T− uT) dSdz

B=

ˆ 1+maxh

minh

ˆ
γ+∩{y2⩽z}

n+ · (∇T− uT) dSdz

C=

ˆ 1+maxh

minh

ˆ
Ω∩{y2=z}

n+ · (∇T− uT) dSdz.

We analyze the three terms separately:
Term C: we notice that this term can be simply rewritten as

C=

ˆ 1+maxh

minh

ˆ
Ω∩{y2=z}

(∂2T− u2T) dSdz=
ˆ
Ω

(∂2T− u2T) .

Term B: this integral has a sign, in fact

B=

ˆ 1+maxh

minh

ˆ
γ+∩{y2⩽z}

n+ ·∇TdSdz⩽ 0, (19)

9
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since, at γ+ we have n+ ·∇T⩽ 0.
Term A: we decompose the integral in A further:

A=

(ˆ maxh

minh
+

ˆ 1+maxh

maxh

)ˆ
γ−∩{y2⩽z}

n− · (∇T− uT) dSdz=: A1 +A2.

Notice that

A2 =

ˆ 1+maxh

maxh

ˆ
γ−
n− · (∇T− uT) dSdz=

ˆ 1

0
dz
ˆ
γ−
n− · (∇T− uT) dS

=

ˆ
γ−
n− ·∇T.

The term A1 instead will be estimated as follows

ˆ maxh

minh

ˆ
γ−∩{y2⩽z}

n− · (∇T− uT) dSdz

=

ˆ maxh

minh

ˆ
γ−∩{y2⩽z}

n− ·∇TdSdz⩽
ˆ maxh

minh

ˆ
γ−
n− ·∇TdSdz

= (maxh−minh)
ˆ
γ−
n− ·∇T,

where in the first inequality we used that n− ·∇T⩾ 0 at γ−.
Putting all together, we obtain

ˆ 1+maxh

minh

ˆ
∂Ω⋆

n · (∇T− uT) dSdz

⩽ (1+maxh−minh)
ˆ
γ−
n− ·∇T+

ˆ
Ω

(∂2T− u2T) .

Taking the long-time average and observing that

limsup
t→∞

1
t

ˆ t

0

ˆ 1+maxh

minh

ˆ
∂Ω⋆(z)

n · (∇T− uT) dS dz dt

= limsup
t→∞

1
t

ˆ t

0

ˆ 1+maxh

minh

ˆ
Ω⋆(z)

(∆T− u ·∇T) dy dz dt

= limsup
t→∞

1
t

ˆ t

0

d
dt

ˆ 1+maxh

minh

ˆ
Ω⋆(z)

T dy dz dt= 0

by the maximum principle for T, we have

0⩽ (1+maxh−minh)⟨n− ·∇T⟩γ− + ⟨∂2T− u2T⟩

implying

⟨u2T− ∂2T⟩⩽ (1+maxh−minh)⟨n− ·∇T⟩γ− .

10
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3. A-priori bounds

In this section we collect a-priori bounds on the energy and enstrophy of the solution u and
derive pressure estimates that will be used to prove the main result in the section 4.

3.1. A-priori estimate for the velocity

Proposition 3.1 (Energy Balance). Strong solutions of (NS), (DF) and (4) satisfy

1
2Pr

d
dt
∥u∥22 + ∥∇u∥22 +

ˆ
γ+∪γ−

(2α+κ)u2τ = Ra
ˆ
Ω

Tu2. (20)

Proof. The balance follows by testing the Navier Stokes equations with u, integrating by parts
and observing that

ˆ
Ω

u ·∇p= 0

and
ˆ
Ω

u · (u ·∇)u=−
ˆ
Ω

u · (u ·∇)u

by the incompressibility and boundary conditions, and

ˆ
Ω

u ·∆u=−∥∇u∥22 +
ˆ
∂Ω

ni uj∂i uj

=−∥∇u∥22 + 2
ˆ
γ+∪γ−

u · (Du n)−
ˆ
γ+∪γ−

niuj∂jui

=−∥∇u∥22 − 2
ˆ
γ+∪γ−

αu2τ −
ˆ
γ+∪γ−

n · (u ·∇)u

=−∥∇u∥22 −
ˆ
γ+∪γ−

(2α+κ)u2τ .

In this identity we used the algebraic identity

niuj∂iuj = 2u · (Dun)− niuj∂jui.

The Navier slip boundary conditions to deduce

u · (Dun)+αu2τ = 0

and the equality

n · (u ·∇)u= κu2τ , (21)

proved in (88) in the appendix.

Under a smallness assumption on κ, the second and third term on the left-hand side of (20)
are positive and bounded from below by the H1-norm of u even though (2α+κ) might be
negative on some parts of the boundary. This will be essential in what follows, especially in
order to prove the energy decay and the main theorem.

11
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Lemma 3.1. Assume α⩾ α almost everywhere on γ− ∪ γ+ for some constant α > 0 and κ
satisfies

|κ|⩽ 2α+
1

4
√
1+(h ′)

2
min

{
1,
√
α
}

(22)

almost everywhere on γ− ∪ γ+. Then

3
4
∥∇u∥22 +

ˆ
γ−∪γ+

(2α+κ)u2τ ⩾ 1
4
min{1,α}∥u∥2H1 . (23)

Proof. In this proof we use the notation

κ− = κ(y1,h(y1)) , α− = α(y1,h(y1)) , u− = uτ (y1,h(y1)) ,

κ+ = κ(y1,1+ h(y1)) , α+ = α(y1,1+ h(y1)) , u+ = uτ (y1,1+ h(y1)) ,
(24)

which is the evaluation of the functions on the bottom or top boundary. Notice that, because
of the symmetry of the domain, κ− =−κ+.

The idea of the proof is that if κ− is negative for some y1, then κ+ is positive and we can
compensate by the fundamental theorem of calculus.

By the fundamental theorem of calculus, Young’s and Hölder’s inequality

|u(y1,y2) |2 ⩽
(
u− +

ˆ y2

h(y1)
∂2u(y1,z) dz

)2

⩽ (1+ ϵ)u2− +
(
1+ ϵ−1

)(ˆ y2

h(y1)
∂2u(y1,z) dz

)2

⩽ (1+ ϵ)u2− +
(
1+ ϵ−1

)
(y2 − h(y1))∥∂2u∥2L2(γ−,γ+)

(25)

for all ϵ> 0, where ∥∂2u∥2L2(γ−,γ+) =
´ 1+h(y1)
h(y1)

|∂2u(y1,y2)|2dy2 and analogously

|u(y1,y2) |2 ⩽ (1+ ϵ)u2+ +
(
1+ ϵ−1

)
(1+ h(y1)− y2)∥∂2u∥2L2(γ−,γ+). (26)

Integrating (25) and (26) in y2 one gets

∥u∥2L2(γ−,γ+) ⩽ (1+ ϵ)min{u2−,u2+}+
1+ ϵ−1

2
∥∂2u∥2L2(γ−,γ+)

⩽ (1+ ϵ)max{α−1
− ,α−1

+ ,1}
(
min{α−,α+}

√
1+(h ′)

2min{u2−,u2+}

+(2ϵ)−1 ∥∂2u∥2L2(γ−,γ+)

)
,

(27)

where in the last inequality we have smuggled in the factor
√
1+(h ′)2 > 1. Next we claim

that

min{α−,α+}
√
1+(h ′)

2u2i ⩽
5
16

∥∂2u∥2L2(γ−,γ+) +(2α− +κ−)

√
1+(h ′)

2u2−

+(2α+ +κ+)

√
1+(h ′)

2u2+

(28)

12
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holds for either i =+ or i =−. Using (28) and (27) turns into

∥u∥2L2(γ−,γ+) ⩽ (1+ ϵ)max{α−1
− ,α−1

+ ,1}
[
(2α− +κ−)

√
1+(h ′)

2u2−

+(2α+ +κ+)

√
1+(h ′)

2u2+ +

(
5
16

+(2ϵ)−1
)
∥∂2u∥2L2(γ−,γ+)

]
.

Integrating in y1 and choosing ϵ= 3 yields

∥u∥22 ⩽ 4max{α−1,1}
[ˆ

γ−∪γ+

(2α+κ)u2τ +
1
2
∥∂2u∥22

]
which implies the following bound for the H1-norm

∥u∥2H1 ⩽ 4max{α−1,1}
[ˆ

γ−∪γ+

(2α+κ)u2τ +
3
4
∥∇u∥22

]
.

It is only left to show that (28) holds. In order to prove the claim we distinguish between
two cases.

• If |κ|⩽ 2α, then both 2α± +κ± > 0 and as κ− =−κ+ either κ− or κ+ is non-negative.
Assume first κ− ⩾ 0. Then by these observations

min{α−,α+}
√
1+(h ′)

2u2i ⩽ 2α−

√
1+(h ′)

2u2−

⩽ (2α− +κ−)

√
1+(h ′)

2u2− +(2α+ +κ+)

√
1+(h ′)

2u2+

The case κ+ > 0 follows similar with u2+ instead of u2−.
• Now assume that κ+ < 0 and |κ+|> 2α+. The case κ− < 0 and |κ−|> 2α− follows sim-
ilarly by exchanging + and −. Using (25) with y2 = 1+ h(y1), respectively (26) with
y2 = h(y1), and observing that κ− =−κ+ > 2α+ > 0 it holds

− (2α− +κ−)

√
1+(h ′)

2u2− − (2α+ +κ+)

√
1+(h ′)

2u2+

=−(2α− +κ−)

√
1+(h ′)

2u2− +(κ− − 2α+)

√
1+(h ′)

2u2+

⩽ (κ− − 2α+)
(
1+ ϵ−1

)√
1+(h ′)

2∥∂2u∥2L2(γ−,γ+)

− [2α− + 2α+ − ϵ(κ− − 2α+)]

√
1+(h ′)

2u2−.

In order for the squared bracket to be positive we choose ϵ= α−+α+

κ−−2α+
to get

− (2α− +κ−)

√
1+(h ′)

2u2− − (2α+ +κ+)

√
1+(h ′)

2u2+

⩽
(
κ− − 2α+ +

(κ− − 2α+)
2

α− +α+

)√
1+(h ′)

2∥∂2u∥2L2(γ−,γ+)

− [α− +α+]

√
1+(h ′)

2u2−.

13
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Then, as the smallness condition (22) implies

κ− = |κ+|⩽ 2α+ +
1

4
√
1+(h ′)

2
min

{
1,
√
α+

}

⩽ 2α+ +
1
4
min

 1√
1+(h ′)

2
,

√
α+ +α−(

1+(h ′)
2
) 1

4

 ,

we get

− (2α− +κ−)

√
1+(h ′)

2u2− − (2α+ +κ+)

√
1+(h ′)

2u2+

⩽ 5
16

∥∂2u∥2L2(γ−,γ+) − [α− +α+]

√
1+(h ′)

2u2−,

proving the claim.

Remark 3.1. Note that this Lemma can be improved: In fact for every κ and α with κ∓ <√
2α∓+2α±√

1+(h ′)2
+(2α±)2, where we use the notation (24), it holds ∥∇u∥22 +

´
(2α+κ)u2τ > 0.

This implies energy decay in (20).
Nevertheless, in order to simplify the estimates and improve readability we will work with
assumption (22) instead. This choice will have no effects in terms of optimality of the bounds
for the Nusselt number.

Wewill use the energy balance and (23) to prove the following decay estimate for the energy
of u:

Lemma 3.3 (Energy Decay). Let the assumptions of lemma 3.1 be satisfied. Then the energy
of u is bounded by

∥u∥22 ⩽ e−
1
4 min{1,α}Pr t∥u0∥22 + 256max

{
1,α−2

}
|Ω|Ra2. (29)

Proof. By the energy balance (20), Young’s inequality and the maximum principle (13), we
obtain

1
2Pr

d
dt
∥u∥22 ⩽−∥∇u∥22 −

ˆ
γ+∪γ−

(2α+κ)u2τ + ϵ∥u2∥22 +
4
ϵ
|Ω|Ra2 . (30)

Plugging (23) into (30), we find

1
2Pr

d
dt
∥u∥22 ⩽−

(
1
4
min{1,α}− ϵ

)
∥u∥22 +

4
ϵ
|Ω|Ra2 ,

and choosing ϵ= 1
8 min{1,α} yields

d
dt
∥u∥22 ⩽−1

4
min{1,α}Pr∥u∥22 + 64Prmax{1,α−1}|Ω|Ra2 .

Applying Grönwall’s inequality we obtain (29).

14
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Taking the long-time average of the energy balance (20), using the fact that

limsup
t→∞

1
t

ˆ t

0

d
dt
∥u∥22 = limsup

t→∞

1
t

(
∥u∥22 −∥u0∥22

)
= 0

thanks to the uniform bound (29) one gets

⟨|∇u|2⟩+ ⟨(2α+κ)u2τ ⟩γ−∪γ+ = Ra⟨Tu2⟩

and observing that, by (17),

Ra⟨Tu2⟩= Ra(⟨u2T− ∂2T⟩− 1)⩽ Ra((1+maxh−minh)Nu− 1) ,

we deduce the following

Corollary 3.4.

⟨|∇u|2⟩+ ⟨(2α+κ)u2τ ⟩γ+∪γ− ⩽ Ra((1+maxh−minh)Nu− 1) . (31)

3.2. A-priori estimate for the vorticity

We now introduce the two-dimensional vorticity ω =∇⊥ · u, where∇⊥ = (−∂2,∂1). It is easy
to see that ω satisfies the equation

1
Pr

(ωt+(u ·∇)ω)−∆ω = Ra∂1T in Ω,

ω =−2(α+κ)uτ on γ+ ∪ γ−.
(32)

Notice that the boundary term is deduced from the following computation

ω = ω (τ · τ) = ω (−τ1n2 + τ2n1) = τi nj (−∂i uj+ ∂jui)

= 2τ ·Du · n− 2n · (τ ·∇)u=−2(α+κ)uτ ,

where we used that τ = (−n2,n1), the boundary conditions (4) and the identity

κuτ = n · (τ ·∇)u, (33)

proved in (87) in the appendix.

Proposition 3.5. The following vorticity balance holds

1
2Pr

d
dt
∥ω∥2 + 1

Pr
d
dt

ˆ
γ−,γ+

(α+κ)u2τ + ∥∇ω∥22 −Ra
ˆ
Ω

ω∂1T

=−2
ˆ
γ−∪γ+

(α+κ)u ·∇p− 2
3Pr

ˆ
γ−∪γ+

(α+κ)u · (u ·∇)u

− 2Ra
ˆ
γ−

(α+κ)uτn1.

Proof. Testing the vorticity equation with ω yields

1
2Pr

d
dt
∥ω∥22 =− 1

Pr

ˆ
Ω

ω (u ·∇)ω+

ˆ
Ω

ω∆ω+Ra
ˆ
Ω

ω∂1T. (34)

15
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Using the incompressibility condition, it is easy to see that the first term on the right-hand side
vanishes since u · n= 0 at ∂Ω. In order to analyze the second term, we first notice that

n ·∇ω = τ ·∆u= 1
Pr

τ · ut+
1
Pr

τ · (u ·∇)u+ τ ·∇p−RaTn1 , (35)

where we used incompressibility in the first identity. Then, using the boundary conditions for
the vorticity and temperature and (35), we have
ˆ
Ω

ω∆ω =−∥∇ω∥22 +
ˆ
γ−∪γ+

ωn ·∇ω

=−∥∇ω∥22 − 2
ˆ
γ−∪γ+

(α+κ)uτn ·∇ω

=−∥∇ω∥22 −
2
Pr

ˆ
γ−∪γ+

(α+κ)uττ · ut−
2
Pr

ˆ
γ−∪γ+

(α+κ)uττ · (u ·∇)u

− 2
ˆ
γ−∪γ+

(α+κ)uττ ·∇p+ 2Ra
ˆ
γ−∪γ+

(α+κ)uτTn1

=−∥∇ω∥22 −
1
Pr

d
dt

ˆ
γ−∪γ+

(α+κ)u2τ −
2
Pr

ˆ
γ−∪γ+

(α+κ)u · (u ·∇)u

− 2
ˆ
γ−∪γ+

(α+κ)u ·∇p+ 2Ra
ˆ
γ−

(α+κ)uτn1 .

Plugging it into (34) yields

1
2Pr

d
dt
∥ω∥22 =

ˆ
Ω

ω∆ω+Ra
ˆ
Ω

ω∂1T

=−∥∇ω∥22 −
1
Pr

d
dt

ˆ
γ−∪γ+

(α+κ)u2τ −
2
Pr

ˆ
γ−∪γ+

(α+κ)u · (u ·∇)u

− 2
ˆ
γ−∪γ+

(α+κ)u ·∇p− 2Ra
ˆ
γ−

(α+κ)uτn1 +Ra
ˆ
Ω

ω∂1T .

Let us observe that the term
´
(α+κ)u · (u ·∇)u is, in general, non-zero as the parameters α

and κ depend on the space variables.

We now want to relate the L2-norm of the vorticity with the L2-norm of the enstrophy.

Lemma 3.6. Let 2⩽ q⩽ p. If h ∈W3,∞ and ω ∈W1,p

∥∇u∥22 = ∥ω∥22 +
ˆ
γ−∪γ+

κu2τ

∥u∥W1,p ⩽ C

(
∥ω∥p+

(
1+ ∥κ∥

1+ 2
q−

2
p

∞

)
∥u∥q

)
∥u∥W2,p ⩽ C

(
∥∇ω∥p+(1+ ∥κ∥∞)∥ω∥p+

(
1+ ∥κ∥2∞ + ∥κ̇∥∞

)
∥u∥p

)
holds, where the constant C only depends on p, |Ω| and ∥h ′∥∞.

Remark 3.2. Note that in the case of flat boundaries the estimates simplify to

∥∇u∥22 = ∥ω∥22, ∥∇u∥Wm,p ⩽ C∥ω∥Wm,p

as proven in lemma 7 in [DNN22].
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Proof.

• Integrating by parts twice, we find

∥∇u∥22 =
ˆ
γ−∪γ+

u · (n ·∇)u−
ˆ
u ·∆u

=

ˆ
γ−∪γ+

u · (n ·∇)u+
ˆ
u⊥ ·∇ω

=

ˆ
γ−∪γ+

u · (n ·∇)u−
ˆ
γ−∪γ+

uτω+ ∥ω∥22,

(36)

where we used the identity

∇⊥ω =

(
∂2
2u1 − ∂1∂2u2

−∂1∂2u1 + ∂2
1u2

)
=∆u,

due to incompressibility. Next notice that τiτj+ ninj = δij. Therefore the second boundary
term of the right-hand side of (36) can be rewritten as

−
ˆ
γ−∪γ+

uτω =−
ˆ
γ−∪γ+

uττ ·
(
τ ·∇⊥)u−ˆ

γ−∪γ+

uτn ·
(
n ·∇⊥)u

=−
ˆ
γ−∪γ+

u · (n ·∇)u+
ˆ
γ−∪γ+

n · (u ·∇)u,
(37)

where in the last identity we used that τ ·∇⊥ =−τ⊥ ·∇= n ·∇ and uτn ·∇⊥ =−uτ · n⊥ ·
∇=−uττ ·∇=−u ·∇. The first term on the right-hand side of (36) cancels with the first
term on the right-hand side of (37), implying

∥∇u∥22 =
ˆ
γ−∪γ+

n · (u ·∇)u+ ∥ω∥22.

Finally using

n · (u ·∇)u= κu2τ (38)

on γ− ∪ γ+, which is proven in (88) in the appendix, yields the claim.
• Let ϕ be the stream function of u, i.e. ∇⊥ϕ = u, then

∆ϕ = ω

ϕ|γ± = ϕ±

with constants ϕ+ and ϕ− and without loss of generality set ϕ− = 0. We can calculate ϕ+

by

ϕ+ =
1
|Ω|

ˆ Γ

0
ϕ+dy1 =

1
|Ω|

ˆ Γ

0

[
ϕ− +

ˆ 1+h(y1)

h(y1)
∂2ϕ dy2

]
dy1 =− 1

|Ω|

ˆ
Ω

u1 dy.

17
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Therefore ϕ̄ = ϕ +(y2 − h(y1)) 1
|Ω|
´
Ω
u1 dy solves

∆ϕ̄ = ω− h ′ ′ 1
|Ω|

ˆ
Ω

u1 dy

ϕ̄|γ± = 0.

In order to flatten the boundary we introduce the change of variables

x=Φ(y) =

(
y1

y2 − h(y1)

)
, y=Ψ(x) =

(
x1

x2 + h(x1)

)
.

Here and in the rest of the paper C> 0 denotes a constant that possibly depends on ∥h ′∥∞,
the size of the domain |Ω| and the Sobolev exponent and may change from line to line. Note
that

∥h ′∥∞ ⩽ C, ∥h ′ ′∥∞ ⩽ C∥κ∥∞, ∥h ′ ′ ′∥∞ ⩽ C(∥κ̇∥∞ + ∥κ∥∞) ,

and for ξ(x) = χ(Ψ(x)) = χ(y) one has

∥∇ξ∥p ⩽ C∥∇χ∥p
∥∇2ξ∥p ⩽ C

(
∥∇2χ∥p+ ∥κ∥∞∥∇χ∥p

)
∥∇3ξ∥p ⩽ C

(
∥∇3χ∥p+ ∥κ∥∞∥∇2χ∥p+(∥κ̇∥∞ + ∥κ∥∞)∥∇χ∥p

) (39)

and analogous for the transformation in the other direction. Then

L̃ϕ̃= f̃ in [0,Γ]× [0,1]

ϕ̃ = 0 on [0,Γ]×{x2 = 0}∪ {x2 = 1},
(40)

where L̃ϕ̃ =
∑

i,j ∂xi(ãi,j∂xj ϕ̃(x)) with ã1,1 = 1, ã1,2 = ã2,1 =−h ′ and ã2,2 = 1+(h ′)2,

ϕ̃(x) = ϕ̄(Ψ(x)) and f̃ = ω̃− h ′ ′ 1
|Ω|
´
Ω
u1dywith ω̃(x) = ω(Ψ(x)). As this operator is elliptic

we get

∥ϕ̃∥W2,p ⩽ C∥̃f∥p (41)

for some constant C> 0 depending only on p, |Ω| and ∥h ′∥∞. Using Hölder’s inequality
and the estimates for the change of variables (39) and (41) becomes

∥ϕ̃∥W2,p ⩽ C∥̃f∥p ⩽ C∥ω∥p+C∥κ∥∞∥u∥p. (42)

Going back to the definition of ϕ̄, we find that (39), Hölder’s inequality and (42) yield

∥∇u∥p = ∥∇2ϕ∥p ⩽ ∥∇2ϕ̄∥p+C∥h ′ ′∥∞∥u1∥1

⩽ C
(
∥∇2ϕ̃∥p+ ∥κ∥∞∥∇ϕ̃∥p+ ∥h ′ ′∥∞∥u1∥1

)
⩽ C(∥ω∥p+ ∥κ∥∞∥u∥p) ,

(43)

implying

∥u∥W1,p ⩽ C(∥ω∥p+(1+ ∥κ∥∞)∥u∥p) . (44)

18



Nonlinearity 37 (2024) 035017 F Bleitner and C Nobili

In order to estimate the Lp-norm of u by the Lq-norm use interpolation andYoung’s inequality
to get

∥u∥p ⩽ C∥∇u∥θp∥u∥1−θ
q +C∥u∥q ⩽ ϵθC∥∇u∥p+C

(
(1− θ)ϵ−

θ
1−θ + 1

)
∥u∥q

for 1
p = θ( 1p −

1
2 )+

1−θ
q and all ϵ> 0. Then choosing ϵ−1 = (1+ ∥κ∥∞) and plugging in

θ = 2(q−p)
2(q−p)−pq

(1+ ∥κ∥∞)∥u∥p ⩽ C∥∇u∥p+C

(
1+ ∥κ∥

1
1−θ
∞

)
∥u∥q

⩽ C∥∇u∥p+C

(
1+ ∥κ∥

1+ 2
q−

2
p

∞

)
∥u∥q

proving the claim.
• In order to prove the W2,p bound notice that by (40) ϕ̂ = ∂x1 ϕ̃ solves

L̃ϕ̂= f̂ in [0,Γ]× [0,1]

ϕ̂ = 0 on {x2 = 0}∪ {x2 = 1},

with f̂ = ∂x1 ω̃+ h ′ ′ ′ 1
|Ω|
´
Ω
u1dy+ ∂x1(h

′ ′∂x2 ϕ̃)+ ∂x2(h
′ ′∂x1 ϕ̃)− 2h ′h ′ ′∂2

x2 ϕ̃ ∈ Lp. Again
using elliptic regularity and Hölder’s inequality we find

∥∂x1 ϕ̃∥W2,p = ∥ϕ̂∥W2,p ⩽ C∥̂f∥p

⩽ C
(
∥∇ω̃∥p+ ∥κ̇∥∞

(
∥u∥p+ ∥∇ϕ̃∥p

)
+ ∥κ∥∞∥∇2ϕ̃∥p

)
.
(45)

In order to estimate the missing term ∂3
x2 ϕ̃ notice as h′ is independent of x2

∂3
x2 ϕ̃ =

1
1+(h ′)2

∂x2

(
∂x2((1+(h ′)2)∂x2 ϕ̃

)
=

1
1+(h ′)2

∂x2

(
L̃ϕ̃− ∂2

x1 ϕ̃ + ∂x1(h
′∂x2 ϕ̃)+ ∂x2(h

′∂x1 ϕ̃)
)

=
1

1+(h ′)2
∂x2

(̃
f − ∂2

x1 ϕ̃ + ∂x1(h
′∂x2 ϕ̃)+ ∂x2(h

′∂x1 ϕ̃)
)
.

(46)

Taking the norm in (46) we find

∥∂3
x2 ϕ̃∥p ⩽ C

(
∥∇f̃∥p+ ∥κ∥∞∥∂2

x2 ϕ̃∥p+ ∥∂x1 ϕ̃∥W2,p

)
. (47)

Combining (45) and (47)

∥ϕ̃∥W3,p ⩽ C
(
∥∇f̃∥p+ ∥κ∥∞∥∇2ϕ̃∥p+ ∥∇ω̃∥p+ ∥κ̇∥∞

(
∥u∥p+ ∥∇ϕ̃∥p

))
.

Using Hölder’s inequality we find

∥∇f̃∥p ⩽ C(∥∇ω̃∥p+ ∥κ̇∥∞∥u∥p) ,
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which together with (42) yields

∥ϕ̃∥W3,p ⩽ C
(
∥∇ω̃∥p+ ∥κ∥∞∥ω∥p+ ∥κ∥2∞∥u∥p+ ∥κ̇∥∞

(
∥u∥p+ ∥∇ϕ̃∥p

))
⩽ C

(
∥∇ω∥p+ ∥κ∥∞∥ω∥p+

(
∥κ∥2∞ + ∥κ̇∥∞

)
∥u∥p

)
,

(48)

where in the last inequality we used

∥∇ω̃∥p ⩽ C∥∇ω∥p, ∥∇ϕ̃∥p ⩽ C∥∇ϕ̄∥p ⩽ C(∥∇ϕ∥p+ ∥u1∥1)⩽ C∥u∥p. (49)

By the definitions and the change of variables estimate (39) and Hölder’s inequality one gets

∥∇2u∥p = ∥∇3ϕ∥p ⩽ ∥∇3ϕ̄∥p+ ∥h ′ ′ ′∥∞
1
|Ω|

ˆ
|u1|

⩽ C
(
∥∇3ϕ̃∥p+ ∥κ∥∞∥∇2ϕ̃∥p+(∥κ̇∥∞ + ∥κ∥∞)∥∇ϕ̃∥p+ ∥κ∥∞∥u∥p

)
⩽ C

(
∥∇ω∥p+ ∥κ∥∞∥ω∥p+

(
∥κ∥∞ + ∥κ∥2∞ + ∥κ̇∥∞

)
∥u∥p

)
,

where in the last inequality we used (42), (48) and (49). Finally using theW1,r-bound for u,
(44), and Young’s inequality yields the claim.

The next result concerns a crucial L∞t L
p
x−bound for the vorticity.

Lemma 3.7. Let p ∈ (2,∞) and assume that the conditions of lemma 3.1 are satisfied. Then
there exists a constant C depending only on p, |Ω| and ∥h ′∥∞ such that

∥ω∥p ⩽ C

[
∥ω0∥p+

(
1+ ∥α+κ∥

2(p−1)
p−2

∞

)
∥u0∥2 +Cα,κRa

]
,

where Cα,κ =

(
1+ ∥α+κ∥

2(p−1)
p−2

∞

)
max

{
1,α−1

}
.

Proof. Fix an arbitrary time t̄> 0 and decompose the solution ω to (32) as

ω = ω̄± + ω̃±

where ω̃± solves

1
Pr

(∂tω̃± + u ·∇ω̃±)−∆ω̃± = Ra∂1T in Ω

ω̃± =±Λ on γ+ ∪ γ−

ω̃±,0 =±|ω0| in Ω ,

with Λ = 2∥(α+κ)uτ∥L∞([0,̄t]×{γ+∪γ−}) and the difference ω̄± = ω− ω̃± solves

1
Pr

(∂tω̄± + u ·∇ω̄±)−∆ω̄± = 0 in Ω

ω̄± =−2(α+κ)uτ ∓Λ on γ+ ∪ γ−

ω̄±,0 = ω0 ∓ |ω0| in Ω .
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Since the boundary and the initial values have a sign, i.e. ω̄+ ⩽ 0 on γ+ ∪ γ−, ω̄+,0 ⩽ 0 in Ω
and ω̄− ⩾ 0 on γ+ ∪ γ−, ω̄−,0 ⩾ 0 in Ω, then, by the maximum principle, ω− ω̃+ = ω̄+ ⩽ 0
and 0⩽ ω̄− = ω− ω̃− yielding ω̃− ⩽ ω ⩽ ω̃+. In particular

|ω|⩽max{|ω̃−|, |ω̃+|} . (50)

Hence, it remains to find upper bounds for |ω̃−| and |ω̃+|. By symmetry, it suffices to show an
upper bound for ω̃+. We divide the proof in three steps:

Step 1: omitting the indices, we define

ω̂ = ω̃−Λ,

then ω̂ satisfies

1
Pr

(∂tω̂+ u ·∇ω̂)−∆ω̂ = Ra∂1T in Ω

ω̂ = Λ−Λ = 0 on γ+ ∪ γ−

ω̂0 = |ω0| −Λ in Ω .

Testing the equation with ω̂|ω̂|p−2 we obtain

1
pPr

d
dt
∥ω̂∥pp =−(p− 1)

ˆ
Ω

|∇ω̂|2|ω̂|p−2 −Ra
ˆ
Ω

T∂1
(
|ω̂|p−2ω̂

)
.

Using ∥T∥∞ = 1, Young’s and Hölder’s inequality, we estimate the second term of the right-
hand side as ∣∣∣∣Raˆ

Ω

T∂1
(
|ω̂|p−2ω̂

)∣∣∣∣⩽ p− 1
2

(
Ra2|Ω|

2
p ∥ω̂∥p−2

p +

ˆ
Ω

|∇ω̂|2|ω̂|p−2

)
.

Then

1
pPr

d
dt
∥ω̂∥pp ⩽

p− 1
2

(
Ra2|Ω|

2
p ∥ω̂∥p−2

p −
ˆ
Ω

|∇ω̂|2|ω̂|p−2

)
=
p− 1
2

(
Ra2|Ω|

2
p ∥ω̂∥p−2

p − 4
p2
∥∥∇|ω̂|

p
2
∥∥2
2

)
.

By the Poincaré estimate applied to the second term of the right-hand side (remember that ω̂
vanishes at the boundary by definition), we obtain

1
pPr

d
dt
∥ω̂∥pp ⩽

p− 1
2

Ra2|Ω|
2
p ∥ω̂∥p−2

p − 2
p− 1
p2C2

p
∥ω̂∥pp ,

where Cp denotes the Poincaré constant. Dividing through by ∥ω̂∥p−2
p we obtain the inequality

d
dt
∥ω̂∥2p ⩽

p− 1
p

PrRa2|Ω|
2
p − 4Pr

p− 1
p3C2

p
∥ω̂∥2p.

By the Grönwall inequality

∥ω̂∥2p ⩽ e
−4Pr p−1

p3C2p
t
∥ω̂0∥2p+

1
4
C2
pp

2Ra2|Ω|
2
p ⩽ e

−4Pr p−1
p3C2p

t
∥ω0 −Λ∥2p+

1
4
C2
pp

2Ra2|Ω|
2
p
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⩽ e
−4Pr p−1

p3C2p
t(
∥ω0∥2p+Λ2|Ω|

2
p

)
+

1
4
C2
pp

2Ra2|Ω|
2
p ⩽ C2

(
∥ω0∥2p+Λ2 +Ra2

)
.

Step 2: we now turn to the estimate for Λ. We have

Λ = 2∥(α+κ)uτ∥L∞(γ−∪γ+) ⩽ 2∥α+κ∥∞∥u∥L∞(Ω×[0,̄t]),

which can be bounded using interpolation and Young’s inequality by

2∥α+κ∥∞∥u∥L∞(Ω×[0,̄t])

⩽ C∥α+κ∥∞∥∇u∥θ
L∞t (Lpx)

∥u∥1−θ
L∞t (L2x)

+C∥α+κ∥∞∥u∥L∞t (L2x)

⩽ ϵCθ∥∇u∥L∞t (Lpx) +C
[
1+(1− θ)ϵ

p
2−p ∥α+κ∥

p
p−2
∞

]
∥α+κ∥∞∥u∥L∞t (L2x)

for p> 2 and arbitrary ϵ> 0, where θ = p
2(p−1) and L

∞
t (Lpx) = L∞([0, t̄];Lp(Ω)). According to

lemma 3.6

∥u∥W1,p ⩽ C

(
∥ω∥p+

(
1+ ∥κ∥

2− 2
p

∞

)
∥u∥2

)
resulting in

Λ⩽ ϵC∥ω∥L∞t (Lpx) +C

[
ϵ

(
1+ ∥κ∥

2− 2
p

∞

)
+ ∥α+κ∥∞ + ϵ

p
2−p ∥α+κ∥

2(p−1)
p−2

∞

]
∥u∥L∞t (L2x)

.

Step 3: recalling that |ω|⩽max{|ω̃−|, |ω̃+|} and ω̂+ = ω̃+ −Λ and using the results of
Step 1 and Step 2 one gets

∥ω∥L∞t (Lpx) ⩽ ∥ω̃∥L∞t (Lpx) = ∥ω̂+Λ∥L∞t (Lpx) ⩽ ∥ω̂∥L∞t (Lpx) + |Ω|
1
pΛ⩽ C(∥ω0∥p+Ra+Λ)

⩽ ϵC∥ω∥L∞t (Lpx) +C∥ω0∥p+CRa+C

[
ϵ

(
1+ ∥κ∥

2− 2
p

∞

)
+ ∥α+κ∥∞

+ϵ
p

2−p ∥α+κ∥
2(p−1)
p−2

∞

]
∥u∥L∞t (L2x)

.

Choosing ϵ small we can compensate the vorticity term on the right-hand side. By symmetry
of the two boundaries maxγ−∪γ+ κ=−minγ−∪γ+ κ, which, as α> 0, implies ∥κ∥∞ ⩽ ∥α+
κ∥∞. Combining these observations we find

∥ω∥L∞t (Lpx) ⩽ C∥ω0∥p+C

(
1+ ∥α+κ∥

2(p−1)
p−2

∞

)
∥u∥L∞t (L2x)

+CRa.

Finally lemma 3.3 yields

∥ω∥L∞t (Lpx) ⩽ C

[
∥ω0∥p+

(
1+ ∥α+κ∥

2(p−1)
p−2

∞

)
∥u0∥2 +Cα,κRa

]
,

where Cα,κ = (1+ ∥α+κ∥
2(p−1)
p−2

∞ )max
{
1,α−1

}
and C only depends on |Ω|, ∥h ′∥∞ and p. As

the constants are independent of t̄ this bound holds universally in time.
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As Ω is bounded Hölder inequality and lemma 3.7 yield that if ω0 ∈ Lp for any p<∞ then
∥ω∥p is universally bounded in time. By trace Theorem and lemma 3.6

∥u∥L2(γ−∪γ+) ⩽ ∥u∥H1 ⩽ C(∥ω∥2 +(1+ ∥κ∥∞)∥u∥2) .

Using lemma 3.3 this is also universally bounded in time, therefore taking the long time average
of the vorticity balance, see lemma 3.5, we get the following.

Corollary 3.8. Assume that the conditions of lemma 3.7 are satisfied and ω0 ∈ Lp for some
p> 2, then

0= ⟨|∇ω|2⟩− 2⟨(α+κ)u ·∇p⟩γ−∪γ+ −Ra⟨ω∂1T⟩

+
2

3Pr
⟨(α+κ)u · (u ·∇)u⟩γ−∪γ+ + 2Ra⟨(α+κ)uτn1⟩γ− .

(51)

3.3. A-priori estimate for the pressure

The pressure satisfies

∆p=− 1
Pr

(∇u)T : ∇u+Ra∂2T in Ω

n ·∇p=− 1
Pr

κu2τ + 2τ ·∇((α+κ)uτ ) on γ+

n ·∇p=− 1
Pr

κu2τ + 2τ ·∇((α+κ)uτ )+ n2Ra on γ−.

(52)

The equation in the bulk is easy to obtain by applying the divergence to the Navier–
Stokes equations, using incompressibility and writing compactly∇· ((u ·∇)u) = (∇u)T :∇u.
In order to track the pressure at the boundary we look at Navier–Stokes equations at γ− ∪ γ+

(
1
Pr

(ut+(u ·∇)u)−∆u+∇p−RaTe2

)
· n= 0

where n is the normal at the boundary. It is clear that

n · ut =
d
dt

(n · u) = 0

and

n ·∆u= n ·∇⊥ω =−2n ·∇⊥ ((α+κ)uτ ) = 2τ ·∇((α+κ)uτ ) ,

using the boundary condition for the vorticity in (32). Thanks to (88) in the appendix we also
have

n · (u ·∇)u= κu2τ . (53)

Hence
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n ·∇p=− κ

Pr
u2τ + 2τ ·∇((α+κ)uτ )+ n2TRa

at the boundary. Now, it is only left to observe that T = 0 at γ+ and T = 1 at γ−.

Proposition 3.9. For any r ∈ (2,∞) there exists a constant C depending on |Ω|, r and ∥h ′∥∞
such that

∥p∥H1 ⩽ C

[
Ra∥T∥2 + ∥α+κ∥∞∥u∥H2 +

(
1+ ∥κ∥∞

Pr
∥u∥W1,r + ∥α̇+ κ̇∥∞

)
∥u∥H1

]
.

Proof. On one hand, integrating by parts and using the boundary conditions (for u and T), we
haveˆ

Ω

p∆p=−∥∇p∥22 −
1
Pr

ˆ
γ−∪γ+

pκu2τ + 2
ˆ
γ−∪γ+

pτ ·∇((α+κ)uτ )+Ra
ˆ
γ−
pn2.

On the other hand using the equation satisfied by the pressure (52)
ˆ
Ω

p∆p=− 1
Pr

ˆ
Ω

p(∇u)T : ∇u+Ra
ˆ
Ω

p∂2T

=− 1
Pr

ˆ
Ω

p(∇u)T : ∇u+Ra
ˆ
γ−∪γ+

pTn2 −Ra
ˆ
Ω

T∂2p

=− 1
Pr

ˆ
Ω

p(∇u)T : ∇u+Ra
ˆ
γ−
pn2 −Ra

ˆ
Ω

T∂2p,

where we used the boundary conditions for T in the last identity. Combining these estimates
one gets

∥∇p∥2 =− 1
Pr

ˆ
γ−∪γ+

pκu2τ + 2
ˆ
γ−∪γ+

pτ ·∇((α+κ)uτ )+
1
Pr

ˆ
Ω

p(∇u)T : ∇u

+Ra
ˆ
Ω

T∂2p.

We estimate the right-hand side: by Hölder inequality with 1
r +

1
q +

1
2 = 1 and Sobolev

embedding3

∥p(∇u)T : ∇u∥1 ⩽ ∥p∥q∥∇u∥2∥∇u∥r ⩽ C∥p∥H1∥∇u∥2∥∇u∥r, (54)

where C depends on |Ω|, r and ∥h ′∥∞. For the temperature term we apply Hölder’s inequality
use that ∥T∥∞ ⩽ 1 by the maximum principle (13)

∥T∂2p∥1 ⩽ ∥T∥2∥p∥H1 ⩽ |Ω| 12 ∥p∥H1 ,

3 SinceΩ is bounded, for any 1 ⩽ µ <∞ choose s> max{2,µ} and q= s
µ
> 1, such that ns

n+s
= 2s

2+s
⩽ 2s

s
= 2. By

Hölder and Sobolev inequality we obtain

∥f∥µ ⩽ ∥1∥ µq
q−1

∥f∥µq = |Ω|
q−1
µq ∥f∥s = |Ω|

µs−1
s ∥f∥s ⩽ C∥f∥

W
1, ns

n+s
⩽ C∥f∥H1 .

.
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and for the second term we compute

ˆ
γ−∪γ+

|pτ ·∇((α+κ)uτ )|

⩽ ∥α+κ∥∞∥p∥L2(γ−∪γ+)∥∇u∥L2(γ−∪γ+) + ∥α̇+ κ̇∥∞∥p∥L2(γ−∪γ+)∥u∥L2(γ−∪γ+)

⩽ C∥α+κ∥∞∥p∥H1∥u∥H2 +C∥α̇+ κ̇∥∞∥p∥H1∥u∥H1 ,

where in the last inequality we use the trace estimate. Finally, we estimate the first term: similar
to (54) for 1

r +
1
q +

1
2 = 1 and every r> 2

∣∣∣∣ˆ
γ−∪γ+

κpu2τ

∣∣∣∣⩽ ∥κ∥∞∥pu2τ∥L1(γ−∪γ+)

⩽ C∥κ∥∞∥pu2∥W1,1

⩽ C∥κ∥∞ (∥p∥q∥u∥2∥u∥r+ ∥∇p∥2∥u∥r∥u∥q+ ∥p∥q∥u∥r∥∇u∥2)
⩽ C∥κ∥∞ (∥p∥H1∥u∥H1∥u∥W1,r + ∥∇p∥2∥u∥r∥u∥H1 + ∥p∥H1∥u∥r∥∇u∥2)
⩽ C∥κ∥∞∥p∥H1∥u∥H1∥u∥W1,r ,

where C depends on |Ω|, r and ∥h ′∥∞.
Combining the estimates we find

∥∇p∥22 ⩽ C∥p∥H1

[
Ra+ ∥α+κ∥∞∥u∥H2 +

(
1+ ∥κ∥∞

Pr
∥u∥W1,r + ∥α̇+ κ̇∥∞

)
∥u∥H1

]
.

Using that the pressure p is only defined up to a constant so we choose p to have zero
mean such that Poincaré yields ∥p∥q ⩽ C∥∇p∥q which implies ∥p∥2H1 = ∥∇p∥22 + ∥p∥22 ⩽ (1+
C2)∥∇p∥22. Then

∥p∥2H1 ⩽ C∥p∥H1

[
Ra+ ∥α+κ∥∞∥u∥H2 +

(
1+ ∥κ∥∞

Pr
∥u∥W1,r + ∥α̇+ κ̇∥∞

)
∥u∥H1

]
.

Finally dividing by ∥p∥H1 we conclude that there exists a constant C> 0 depending on Ω and
r such that

∥p∥H1 ⩽ C

[
Ra+ ∥α+κ∥∞∥u∥H2 +

(
1+ ∥κ∥∞

Pr
∥u∥W1,r + ∥α̇+ κ̇∥∞

)
∥u∥H1

]
.

for any r> 2.

4. Upper bounds on the Nusselt number

Combining the a-priori estimates derived in the previous section we are now able to prove
the Ra

1
2 bound, that was first derived for the flat, no slip case in 3 dimensions by Doering and

Constantin [DC96].
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Figure 4. Illustration of Ωδ .

4.1. Proof of theorem 1.1

Let Ωδ be given by

Ωδ = {(y1,y2) | 0⩽ y1 ⩽ Γ,1+ h(y1)− δ ⩽ y2 ⩽ 1+ h(y1)}

as illustrated in figure 4.
Taking the average in z ∈ (1− δ,1) in the representation of the Nusselt number (16) we

find

Nu= limsup
T→∞

1
T

ˆ T

0

1
δ

1
|Ω|

ˆ 1

1−δ

ˆ
γ(z)

n+ · (u−∇)T dS dz dt

= limsup
T→∞

1
T

ˆ T

0

1
δ

1
|Ω|

ˆ
Ωδ

n+ · uT dy dt− limsup
T→∞

1
T

ˆ T

0

1
δ

1
|Ω|

ˆ
Ωδ

n+ ·∇T dy dt.

(55)

In order to estimate the first term on the right-hand side notice that by the fundamental theorem
of calculus for (y1,y2) ∈ Ωδ

|n+ · u|(y1,y2) =

∣∣∣∣∣n+ · u|γ+ +

ˆ y2

1+h(y1)
∂2 (n+ · u) dz

∣∣∣∣∣⩽
ˆ 1+h(y1)

1+h(y1)−δ

|∂2u| dz

⩽ δ
1
2 ∥∇u∥L2(γ−,γ+),

(56)

where ∥∇u∥L2(γ−,γ+) = ∥∇u(y1, ·)∥L2(h(y1),1+h(y1)) and we used the non-penetration bound-
ary condition for u and that n+ is constant in y2-direction in the first inequality and Hölder’s
inequality in the second estimate. Analogously for the temperature and (y1,y2) ∈ Ωδ it holds

|T|(y1,y2)⩽ δ
1
2 ∥∇T∥L2(γ−,γ+) (57)

as T = 0 on γ+. In order to estimate the second integral in (55) partial integration and the
boundary condition T = 0 on γ+ yields∣∣∣∣ˆ

Ωδ

n+ ·∇T dy

∣∣∣∣⩽ ˆ
γ+

|T| dS+
ˆ
γ(1−δ)

|n+ · n−T| dS+
ˆ
Ωδ

|T∇· n+| dy. (58)
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By the maximum principle (13) the temperature is bounded by ∥T∥∞ ⩽ 1, so the first two
terms on the right-hand side of (58) are bounded by a constant depending on ∥h ′∥∞ and |Ω|.
In order to estimate the last term notice that

n+ =
1√

1+(h ′)
2

(
−h ′

1

)
and |κ|= |h ′ ′|(

1+(h ′)
2
) 3

2

,

where h ′ = ∂1h(y1) and h ′ ′ = ∂2
1h(y1) as derived in (84) and (86) in the appendix. Therefore

|∇ · n+|= |κ|, which implies

ˆ
Ωδ

|T∇· n+| dy⩽ ∥κ∥∞|Ωδ|

for the last term in (58). Combining these observations

∣∣∣∣ˆ
Ωδ

n+ ·∇T dy

∣∣∣∣⩽ C+ δΓ∥κ∥∞. (59)

Plugging (56), (57) and (59) into (55) and using Hölder inequality, there exists a constant
depending on ∥h ′∥∞ and |Ω| such that

Nu⩽ limsup
T→∞

1
T

ˆ T

0

1
|Ω|

ˆ
Ωδ

∥∇u∥L2(γ−,γ+)∥∇T∥L2(γ−,γ+) dy dt+C
1
δ
+ ∥κ∥∞

⩽ C

(
δ⟨|∇u|2⟩ 1

2 ⟨|∇T|2⟩ 1
2 +

1
δ

)
+ ∥κ∥∞.

By (15) and (31) we can substitute both gradients and get

Nu⩽ C

(
δRa

1
2 ((1+maxh−minh)Nu− 1)

1
2 Nu

1
2 +

1
δ

)
+ ∥κ∥∞

⩽ C

(
δRa

1
2Nu+

1
δ

)
+ ∥κ∥∞.

Balancing the terms by choosing δ = Nu−
1
2Ra−

1
4 we get

Nu⩽ CRa
1
2 + 2∥κ∥∞

for Ra⩾ 1.

Remark 4.1. We notice that the same proof (with minor modifications) would yield Nu≲
Ra

1
2 + ∥κ∥∞, for a flow with no-slip boundary conditions, which is the case considered by

Goluskin and Doering. For comparison, in [GD16] the authors proved Nu≲ Ra
1
2 , where the

constant only depends on ∥∇h∥2, by using the background field method.
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Figure 5. Illustrations of the background profile η.

4.2. Introduction of the background field method

In order to improve the bound of theorem 1.1 we follow the ‘background field’ strategy used
[DNN22], which is based on [WD11]. This approach consists of specifying a stationary back-
ground field for the temperature and show its ‘marginal stability’ as we will explain in what
follows. This will be achieved by applying the a-priori bounds derived in section 3.

To this end we define the background profile for the temperature by

η (y1,y2) = 1− 1
2δ

2δ+ y2 − (1+ h(y1)) for 1+ h(y1)− δ ⩽ y2 ⩽ 1+ h(y1)
δ for h(y1)+ δ < y2 < 1+ h(y1)− δ
y2 − h(y1) for h(y1)⩽ y2 ⩽ h(y1)+ δ

(60)

for δ > 0 and the difference θ by

θ = T− η. (61)

This profile is illustrated in figure 5.
Note that η fulfills the boundary conditions of T, so θ vanishes on γ±. Also since n− can

be expressed by

n− =
1√

1+(h ′)
2

(
h ′

−1

)

as derived in (84), its gradient is given by

∇η =

{
0 for h(y1)+ δ < y2 < 1+ h(y1)− δ

1
2δ

√
1+(h ′)

2n− else (62)

for almost every y ∈ Ω. Inserting this decomposition in the definition of the Nusselt number,
we have the following.

Proposition 4.1. Let η and θ be defined by (60) and (61). Then

Nu= ⟨|∇η|2⟩− ⟨|∇θ|2⟩− 2⟨θu ·∇η⟩ (63)
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The proof of this identity is essentially the same as the one for proposition 7 in [DNN22]
and we report it here just for convenience of the reader.

Proof. Plugging the definitions of η and θ into (AD) we have

θt+ u ·∇η+ u ·∇θ−∆η−∆θ = 0,

and, integrating this equation against θ we find

0=
1
2
d
dt
∥θ∥22 +

ˆ
Ω

θu ·∇η+

ˆ
Ω

θu ·∇θ−
ˆ
Ω

θ∆η−
ˆ
Ω

θ∆θ. (64)

The third term on the right-hand side of (64) vanishes since u · n= 0 and u is divergence-free.
For the fourth term on the right-hand side of (64) we get

−
ˆ
Ω

θ∆η =−
ˆ
γ−∪γ+

θn ·∇η+

ˆ
Ω

∇θ ·∇η =

ˆ
Ω

∇θ ·∇η,

where in the last equality we used that θ vanishes on the boundary by definition. Similarly

−
ˆ
Ω

θ∆θ = ∥∇θ∥22.

Therefore taking the long time average of (64) and using that θ is universally bounded in time
as both T and η fulfill 0⩽ T,η ⩽ 1 we find

⟨θu ·∇η⟩+ ⟨∇θ ·∇η⟩+ ⟨|∇θ|2⟩= 0.

Using this identity in (15) we find

Nu= ⟨|∇T|2⟩= ⟨|∇η|2⟩+ 2⟨∇θ ·∇η⟩+ ⟨|∇θ|2⟩= ⟨|∇η|2⟩− ⟨|∇θ|2⟩− 2⟨θu ·∇η⟩

as a representation of Nu4.

Next we define

a := ⟨|∇ω|2⟩− 2⟨(α+κ)u ·∇p⟩γ−∪γ+ −Ra⟨ω∂1T⟩

+
2
3Pr

⟨(α+κ)u · (u ·∇)u⟩γ−∪γ+ + 2Ra⟨(α+κ)uτn1⟩γ− = 0,

where the last identity is due to (51) and

b := ⟨|∇u|2⟩+ ⟨(2α+κ)u2τ ⟩γ−∪γ+ −Ra((1+maxh−minh)Nu− 1) . (65)

Using (63) we can rewrite the Nusselt number as

(1− b(1+maxh−minh))Nu+ b=MRa2 + 2⟨|∇η|2⟩−Q [u,θ,η] (66)

where the quadratic form Q is defined as

4 The argument can be rigorously justified via mollification of η.
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Q [u,θ,η] :=MRa2 + ⟨|∇η|2⟩+ ⟨|∇θ|2⟩+ 2⟨θu ·∇η⟩

+
b
Ra

⟨|∇u|2⟩+ b
Ra

⟨(2α+κ)u2τ ⟩γ−∪γ+ − b
Ra

b+ aa . (67)

In this new representation a> 0 and 0⩽ b< (1+maxh−minh)−1 and notice that the balan-
cing termMRa2, withM> 0, was introduced. The choice of the parameters a,b,M will follow
from an optimization procedure at the end.

We now want to prove that for a suitable choice of δ the form Q is non negative. In order
to do so we need the following Lemma.

Lemma 4.2. One has

2|⟨θu ·∇η⟩|⩽ δ6C(aϵ)−1 ⟨|∂2u|2⟩+ aϵ⟨|∂2
2u|2⟩+

1
2
⟨|∂2θ|2⟩

for any ϵ> 0.

Proof. By (62)

2
ˆ
Ω

θu ·∇η =
1
δ

ˆ Γ

0

ˆ h(y1)+δ

h(y1)

√
1+(h ′)

2
θu · n− dy2 dy1

+
1
δ

ˆ Γ

0

ˆ 1+h(y1)

1+h(y1)−δ

√
1+(h ′)

2
θu · n− dy2 dy1.

(68)

We focus on the first term on the right-hand side. The second one can be treated similarly. By
the fundamental theorem of calculus and Hölder’s inequality

|u · n−|(y1,y2) =

∣∣∣∣∣(u · n−)(y1,h(y1))+
ˆ y2

h(y1)
∂2 (u · n−)(y1,z) dz

∣∣∣∣∣
⩽ δ∥∂2 (u · n−)∥L∞(γ−,γ+)

(69)

for h(y1)⩽ y2 ⩽ h(y1)+ δ, where in the last inequality we used the boundary condition for u.
Similarly

|θ (y1,y2) |⩽ δ
1
2 ∥∂2θ∥L2(γ−,γ+) (70)

as θ vanishes on the boundary. In order to estimate ∂2(n− · u) notice that by partial integration
and the boundary condition for u

ˆ 1+h(y1)

h(y1)
∂2 (n− · u) = n2 n− · u|γ− − n2 n− · u|γ+ = 0. (71)

Therefore for every y1 there exists h(y1)⩽ ȳ2 ⩽ 1+ h(y1) such that ∂2(u · n−)(y1, ȳ2) = 0.
Applying the fundamental theorem of calculus again we find

(∂2 (u · n−))2 (y1,y2) = (∂2 (u · n−))2 (y1, ȳ2)+
ˆ y2

ȳ2

∂2

(
(∂2 (u · n−))2

)
(y1,z) dz

⩽ 2∥∂2u∥L2(γ−,γ+)∥∂2
2u∥L2(γ−,γ+),

(72)
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where in the last inequality we used Hölder’s inequality, that n− is constant in e2 direction and
|n−|= 1. Combing (68) with (69), (70) and (72) and using Young’s inequality twice yields∣∣∣∣2ˆ

Ω

θu ·∇η dy

∣∣∣∣
⩽ (2δ)

3
2

ˆ Γ

0
∥∂2u∥

1
2
L2(γ−,γ+)

∥∂2
2u∥

1
2
L2(γ−,γ+)

∥∂2θ∥L2(γ−,γ+)

√
1+(h ′)

2 dy1

⩽ Cδ
3
2

ˆ Γ

0
µν∥∂2u∥2L2(γ−,γ+) +µν−1∥∂2

2u∥2L2(γ−,γ+) +µ−1∥∂2θ∥2L2(γ−,γ+) dy1

for some µ,ν > 0 that will be determined later and C=
∥∥∥√1+(h ′)2

∥∥∥
∞
.

Taking the long time average

2|⟨θu ·∇η⟩|⩽ Cδ
3
2
(
µν⟨|∂2u|2⟩+µν−1⟨|∂2

2u|2⟩+µ−1⟨|∂2θ|2⟩
)

and setting µ= 2δ
3
2C and ν = 2δ3C2(aϵ)−1 yields the result.

With all these preparations at hand we are able to prove the main result in the next
subsection.

4.3. Proof of theorem 1.2

In the following we will extensively use

α⩽ 1, ∥κ∥∞ ⩽ 1. (73)

The first inequality is justified as essinfα⩽ essinfκ>0(α+κ)⩽ ∥α+κ∥∞ ⩽ 1 by assump-
tion (8) and the second one as κ(y1,h(y1)) =−κ(y1,1+ h(y1)) and α> 0 almost everywhere
one has −essinfκ<0κ= esssupκ>0κ⩽ esssupκ>0α+κ⩽ ∥α+κ∥∞ ⩽ 1 by assumption (8).

We will show thatQ is non-negative for some appropriate choice of δ. Then (66) will yield
the bound.

As b⩽ 0 by (31) plugging in the definition of a, i.e. (4.2), yields

Q [u,θ,η] =MRa2 + ⟨|∇η|2⟩+ ⟨|∇θ|2⟩+ 2⟨θu ·∇η⟩+ b
Ra

⟨|∇u|2⟩+ b
Ra

⟨(2α+κ)u2τ ⟩γ−∪γ+

− b
Ra

b+ aa

⩾MRa2 + ⟨|∇η|2⟩+ ⟨|∇θ|2⟩+ 2⟨θu ·∇η⟩+ b
Ra

⟨|∇u|2⟩+ b
Ra

⟨(2α+κ)u2τ ⟩γ−∪γ+

+ a⟨|∇ω|2⟩− 2a⟨(α+κ)u ·∇p⟩γ−∪γ+ − aRa⟨ω∂1T⟩

+
2
3Pr

a⟨(α+κ)u · (u ·∇)u⟩γ−∪γ+ + 2aRa⟨(α+κ)uτn1⟩γ− .

(74)

Next we estimate some of the terms individually.
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• For the eighth term on the right-hand side of (74) we can shift the derivative onto u and
α+κ as the boundary is periodic and get

−
ˆ
γ−∪γ+

(α+κ)u ·∇p dS= ⟨pτ ·∇((α+κ)uτ )⟩γ−∪γ+

= ⟨(α+κ)pτ ·∇uτ ⟩γ−∪γ+ + ⟨p(α̇+ κ̇)uτ ⟩γ−∪γ+ .

Using Hölder’s inequality and Trace Theorem one gets

∣∣∣∣ˆ
γ−∪γ+

(α+κ)u ·∇p dS
∣∣∣∣⩽ C(∥α+κ∥∞∥u∥H2 + ∥α̇+ κ̇∥∞∥u∥H1)∥p∥H1

where α̇ and κ̇ denotes the derivative of α and κ along the boundary. The pressure bound
derived in proposition 3.9 and Young’s inequality imply

2

∣∣∣∣ˆ
γ−∪γ+

(α+κ)u ·∇p dS
∣∣∣∣

⩽ C(∥α+κ∥∞∥u∥H2 + ∥α̇+ κ̇∥∞∥u∥H1)

·
[
Ra∥T∥2 + ∥α+κ∥∞∥u∥H2 +

(
1+ ∥κ∥∞

Pr
∥u∥W1,r + ∥α̇+ κ̇∥∞

)
∥u∥H1

]
⩽
(
ϵ+C∥α+κ∥2∞

)
∥u∥2H2 +Cϵ∥α+κ∥2W1,∞Ra2

+C

((
1
Pr

∥u∥W1,r

)2

+ ∥α+κ∥2W1,∞ + 1

)
∥u∥2H1

(75)

for all ϵ> 0, where Cϵ > 0 depends on |Ω|, r, ∥h ′∥∞ and ϵ and in the last inequality we used
that ∥κ∥⩽ 1.

• For the ninth term on the right-hand side of (74) Hölder’s and Young’s inequality yield

|aRa⟨ω∂1T⟩|= |aRa⟨ω∂1 (η+ θ)⟩|⩽ 1
2
⟨|∇η|2⟩+ 1

2
⟨|∇θ|2⟩+ a2Ra2⟨|ω|2⟩.

• In order to estimate the tenth term on the right-hand side of (74) we first use Hölder’s inequal-
ity and Trace Theorem to get

1
Pr

∣∣∣∣ˆ
γ−∪γ+

(α+κ)u · (u ·∇)u dS

∣∣∣∣⩽ C
∥α+κ∥∞

Pr

∥∥u2|∇u|∥∥
W1,1 . (76)

Again Hölder’s inequality with 1
r +

1
p +

1
2 = 1 and Sobolev Theorem as in the proof of

Proposition 3.9 imply

∥∥u2|∇u|∥∥
W1,1 ⩽ C

(
∥u∥q∥u∥r∥∇u∥2 + ∥u∥q∥∇u∥r∥∇u∥2 + ∥u∥q∥u∥r∥∇2u∥2

)
⩽ C(∥u∥W1,r∥u∥H1 + ∥u∥H2∥u∥W1,r)∥u∥H1

(77)
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for all r> 2. Combining (76) and (77) and using Young’s inequality and the assumption
∥α+κ∥∞ ⩽ 1 yields

2
3Pr

∣∣∣∣ˆ
γ−∪γ+

(α+κ)u · (u ·∇)u dS

∣∣∣∣
⩽ C

1
Pr

(∥u∥W1,r∥u∥H1 + ∥u∥H2∥u∥W1,r)∥u∥H1

⩽ ϵ∥u∥2H2 +C

(
Cϵ

(
1
Pr

∥u∥W1,r

)2

+ 1

)
∥u∥2H1

(78)

for all ϵ> 0 where Cϵ > 0 depends on |Ω|, r, ∥h ′∥∞ and ϵ.
• In order to estimate the eleventh term on the right-hand side of (74) notice that by Trace
Theorem and Young’s inequality

2Ra

∣∣∣∣ˆ
γ−∪γ+

(α+κ)uτn1 dS

∣∣∣∣⩽ CRa∥α+κ∥∞∥u∥H1 ⩽ C∥α+κ∥2∞Ra2 + ∥u∥2H1 . (79)

In order to apply these estimates we first notice that by lemma 3.6

∥u∥W1,r ⩽ C
(
∥ω∥r+(1+ ∥κ∥∞)

2− 2
r ∥u∥2

)
.

The Lp-norm of the vorticity and energy are bounded by lemmas 3.7 and 3.3 respectively,
implying

∥u∥W1,r ⩽ C
(
∥u0∥W1,r +α−1Ra

)
,

where we exploited (73). Using this bound for the W1,r norm of u, the prefactors in the indi-
vidual estimates are independent of time. Then taking the long time average of (75), (78)
and (79) and plugging the bounds into (74) yields

Q [u,θ,η]⩾MRa2 +
1
2
⟨|∇η|2⟩+ 1

2
⟨|∇θ|2⟩+ 2⟨θu ·∇η⟩+ b

Ra
⟨|∇u|2⟩+ b

Ra
⟨(2α+κ)u2τ ⟩γ−∪γ+

+ a⟨|∇ω|2⟩− a
[
2ϵ+C∥α+κ∥2∞

]〈
∥u∥2H2

〉
−Cϵa∥α+κ∥2W1,∞Ra2

− aC

[
Cϵ

(
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α+κ∥2W1,∞ + 1

]〈
∥u∥2H1

〉
− a2Ra2⟨|ω|2⟩.

Choosing M= Cϵa∥α+κ∥2W1,∞

Q [u,θ,η]⩾ 1
2
⟨|∇θ|2⟩+ 2⟨θu ·∇η⟩+ b

Ra
⟨|∇u|2⟩+ b

Ra
⟨(2α+κ)u2τ ⟩γ−∪γ+

+ a⟨|∇ω|2⟩− a
[
2ϵ+C∥α+κ∥2∞

]〈
∥u∥2H2

〉
− aC

[
Cϵ

(
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α+κ∥2W1,∞ + 1

]〈
∥u∥2H1

〉
− a2Ra2⟨|ω|2⟩.

(80)
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In order to estimate the second term on the right-hand side of (80) use lemma (4.2) to get

Q [u,θ,η]⩾ b
Ra

⟨|∇u|2⟩+ b
Ra

⟨(2α+κ)u2τ ⟩γ−∪γ+

+ a⟨|∇ω|2⟩− a
[
3ϵ+C∥α+κ∥2∞

]〈
∥u∥2H2

〉
− aC

[
Cϵ

(
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α+κ∥2W1,∞ + 1

]〈
∥u∥2H1

〉
− a2Ra2⟨|ω|2⟩−Cϵδ

6a−1⟨|∇u|2⟩.

Next according to lemma (3.1) the first two terms on the right-hand side can be estimated by
the H1 norm, i.e.

3b
8Ra

⟨|∇u|2⟩+ b
2Ra

⟨(2α+κ)u2τ ⟩γ−∪γ+ ⩾ αb
8Ra

⟨∥u∥2H1⟩. (81)

Then

Q [u,θ,η]⩾ a⟨|∇ω|2⟩− a
[
3ϵ+C∥α+κ∥2∞

]〈
∥u∥2H2

〉
+

[
αb
8Ra

− aCϵ

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α+κ∥2W1,∞ + 1

)]〈
∥u∥2H1

〉
− a2Ra2⟨|ω|2⟩+

(
5b
8Ra

−Cϵδ
6a−1

)
⟨|∇u|2⟩+ b

2Ra
⟨(2α+κ)u2τ ⟩γ−∪γ+

and by lemma 3.6 and the smallness conditions (73)

⟨∥u∥2H2⟩⩽ C⟨|∇ω|2⟩+C(1+ ∥κ̇∥∞)⟨∥u∥2H1⟩.

For Q one gets

Q [u,θ,η]⩾ a
[
1− 3ϵC1 −C2∥α+κ∥2∞

]
⟨|∇ω|2⟩

+

[
αb
8Ra

− a3ϵ− aCϵ

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]⟨
∥u∥2H1

⟩
− a2Ra2⟨|ω|2⟩+

(
5b
8Ra

−Cδ6a−1
)
⟨|∇u|2⟩+ b

2Ra
⟨(2α+κ)u2τ ⟩γ−∪γ+ ,

where we used Young’s inequality and that ∥α∥∞ ⩽ 2 as ∥κ∥∞ ⩽ 1 by (73) and ∥α+κ∥∞ ⩽
1. Setting ϵ= 1

6C1
and using the smallness assumption ∥α+κ∥2∞ ⩽ C̄= 1

2C2
the first bracket

is positive and we are left with

Q [u,θ,η]⩾
[
αb
8Ra

− aC

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]〈
∥u∥2H1

〉
− a2Ra2⟨|ω|2⟩+

(
5b
8Ra

−Cδ6a−1

)
⟨|∇u|2⟩+ b

2Ra
⟨(2α+κ)u2τ ⟩γ−∪γ+ .

(82)

Next we have to differentiate between the two conditions on κ.
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• Case |κ|⩽ α
In order to estimate the vorticity term notice that by lemma 3.6 and the condition |κ|⩽ α
one has

∥ω∥22 ⩽ ∥∇u∥22 +
ˆ
γ−∪γ+

|κ|u2τ ⩽ ∥∇u∥22 +
ˆ
γ−∪γ+

αu2τ

⩽ ∥∇u∥22 +
ˆ
γ−∪γ+

(2α+κ)u2τ

and taking the long time average (82) turns into

Q [u,θ,η]⩾
[
αb
8Ra

− aC

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]〈
∥u∥2H1

〉
+

[
b

2Ra
− a2Ra2

]
⟨|ω|2⟩+

(
b

8Ra
−Cδ6a−1

)
⟨|∇u|2⟩.

From the second squared bracket on the right-hand side it becomes clear that a has to decay
at least as fast as Ra−

3
2 for Q to be non negative. Setting a= a0Ra

− 3
2

Q [u,θ,η]⩾
[
αb
8Ra

− a0C

Ra
3
2

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]〈
∥u∥2H1

〉
+

1
2Ra

[
b− 2a20

]
⟨|ω|2⟩+

(
b

8Ra
−Cδ6a−1

0 Ra
3
2

)
⟨|∇u|2⟩.

The assumption Pr⩾ 1

α
3
2
Ra

3
4 implies

Q [u,θ,η]⩾ α

Ra

[
b
8
− a0C

(
∥u0∥2W1,r + 1+α−1Ra−

1
2
(
∥α̇∥2∞ + ∥κ̇∥2∞ + 1

))]〈
∥u∥2H1

〉
+

1
2Ra

[
b− 2a20

]
⟨|ω|2⟩+

(
b

8Ra
−Cδ6a−1

0 Ra
3
2

)
⟨|∇u|2⟩

and since Ra−
1
2 < α

Q [u,θ,η]⩾ α

Ra

[
b
8
− a0C

(
∥u0∥2W1,r + ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]〈
∥u∥2H1

〉
+

1
2Ra

[
b− 2a20

]
⟨|ω|2⟩+

(
b

8Ra
−Cδ6a−1

0 Ra
3
2

)
⟨|∇u|2⟩,

where without loss of generality C⩾ 1. In order for the two squared brackets to be non-
negative we choose

a0 =
b

8C
(
∥u0∥2W1,r + ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)
and get

Q [u,θ,η]⩾
(

b
8Ra

−Cδ6a−1
0 Ra

3
2

)
⟨|∇u|2⟩.
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Letting δ solve b
8Ra = Cδ6a−1

0 Ra
3
2 , i.e.

δ =

(
a0b
8C

) 1
6

Ra−
5
12

Q is non-negative. Now we can come the estimating the Nusselt number. By (66)

(1− b(1+maxh−minh))Nu+ b⩽MRa2 + 2⟨|∇η|2⟩.

The gradient can be estimated by (62), which yields

⟨|∇η|2⟩⩽ Cδ−1

and plugging in δ and M= Ca∥α+κ∥2W1,∞ and choosing b= 1
2(1+maxh−minh) we find

Nu⩽ C 1
2
∥α+κ∥2W1,∞Ra

1
2 +C 5

12
Ra

5
12

with C 1
2
= C(1+ ∥u0∥2W1,r)−1 and C 5

12
= C(∥u0∥W1,r + ∥α̇∥∞ + ∥κ̇∥∞ + 1)

1
3 .

• Case |κ|⩽ 2α+ 1
4
√

1+(h ′)2

√
α

Using lemma 3.6, Trace theorem and ∥κ∥∞ ⩽ 1 we can bound the vorticity term by

∥ω∥22 ⩽ C∥u∥2H1

and taking the long time average (82) turns into

Q [u,θ,η]⩾
[
αb
8Ra

− aC

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]〈
∥u∥2H1

〉
−Ca2Ra2

〈
∥u∥2H1

〉
+

(
5b
8Ra

−Cδ6a−1

)
⟨|∇u|2⟩+ b

2Ra
⟨(2α+κ)u2τ ⟩γ−∪γ+ .

Again applying (81) we find

Q [u,θ,η]⩾
[
αb
8Ra

− aC

((
1
Pr

(
∥u0∥W1,r +α−1Ra

))2

+ ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

)]〈
∥u∥2H1

〉
+

[
αb
8Ra

−Ca2Ra2
]〈

∥u∥2H1

〉
+

(
b

4Ra
−Cδ6a−1

)
⟨|∇u|2⟩,

(83)

which because of the second squared bracket on the right-hand side imposes the condition
on a to decay at least as fast as Ra−

3
2 . We differentiate between two choices of a.

▶ Setting a= a0Ra
− 3

2 in (83) and estimating similar to before, using the assumptions
Ra−1 ⩽ α and Pr⩾ 1

α
3
2
Ra

3
4 , we find

Q [u,θ,η]⩾ α

Ra

[
b
8
− a0C

(
∥u0∥2W1,r +α− 1

2
(
∥α̇∥2∞ + ∥κ̇∥2∞ + 1

))]〈
∥u∥2H1

〉
+

1
Ra

(
αb
8

−Ca20

)
⟨∥u∥2H1⟩+

(
b

4Ra
−Cδ6a−1

0 Ra
3
2

)
⟨|∇u|2⟩.
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Choosing

a0 =
α

1
2 b
8

1

C
(
∥u0∥2W1,r + ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

) , δ =

(
a0b
4C

) 1
6

Ra−
5
12 ,

b=
1

2(1+maxh−minh)
Q is non-negative and hence

Nu⩽ Ca0∥α+κ∥2W1,∞Ra
1
2 +Cδ−1

⩽ C 1
2
α

1
2 ∥α+κ∥2W1,∞Ra

1
2 +C 5

12
α− 1

12Ra
5
12

with C 1
2
= C(1+ ∥u0∥2W1,r)−1 and C 5

12
= C(∥u0∥W1,r + ∥α̇∥∞ + ∥κ̇∥∞ + 1)

1
3 .

▶ Setting a= a0Ra
− 11

7 in (83) and estimating similar to before, using Pr⩾ Ra
5
7 , we find

Q [u,θ,η]⩾ 1
Ra

[
αb
8

− a0C
(
Ra−

9
7 ∥u0∥2W1,r +α−2 +Ra−

4
7

(
∥α̇∥2∞ + ∥κ̇∥2∞ + 1

))]〈
∥u∥2H1

〉
+

1
Ra

(
αb
8

−Ca20Ra
− 1

7

)
⟨∥u∥2H1⟩+

(
b

4Ra
−Cδ6a−1

0 Ra
11
7

)
⟨|∇u|2⟩,

which after choosing

a0 =
αb
8

1

C
(
∥u0∥2W1,r +α−2 + ∥α̇∥2∞ + ∥κ̇∥2∞ + 1

) , δ =

(
a0b
4C

) 1
6

Ra−
3
7 ,

b=
1

2(1+maxh−minh)
is non-negative, implying

Nu⩽ Ca∥α+κ∥2W1,∞Ra2 +Cδ−1 ⩽ C 3
7
Ra

3
7 ,

where C 3
7
= C

(
∥α+κ∥2W1,∞ +α− 1

2 +α− 1
6 (∥u0∥W1,r + ∥α̇∥∞ + ∥κ̇∥∞ + 1)

1
3

)
.

5. Notation

• Perpendicular direction:

a⊥ =

(
−a2
a1

)
• Vorticity:

ω =∇⊥ · u.

• uτ = τ · u is the scalar velocity along the boundary.
• Tensor product:

A : B= aijbij

• If not explicitly stated differently C will denote a positive constant, which might depend on
the size of the domain |Ω|= Γ, ∥h ′∥∞ and potentially on the exponent of the Sobolev norm.
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• n+ is the normal vector pointing upwards.
• n− is the normal vector pointing downwards.
• n is the general normal vector with direction pointing outwards its domain.
• τ = n⊥ is the tangential vector oriented in the direction of n⊥.
• λ is the parameterization of the boundary by arc-length in the direction of τ .
• Variable in the curved domain: y=

(
y1,y2

)
∈ Ω

• Variable in the straightened domain: x=
(
x1,x2

)
∈ [0,Γ]× [0,1]

• S denotes the integration variable over one-dimensional curves.
• If the Lebesgue and Sobolev norms are taken over the whole domain of definition of the
function we abbreviate like the following

∥α+κ∥∞ = ∥α+κ∥L∞(γ−∪γ+), ∥u∥p = ∥u∥Lp(Ω)

• For single integrals over the whole domain of integration we skip the integration variable
for easier readability, i.e.

ˆ
γ−

κu2τ =

ˆ
γ−

κu2τ dS,
ˆ
Ω

ω2 =

ˆ
Ω

ω2 dy

• Lp(γ−,γ+), depending on y1, denotes the Lp-norm along a vertical line defined by

∥u∥pLp(γ−,γ+) =

ˆ 1+h(y1)

h(y1)
|u(y1,y2) |p dy2.

Data availability statement

No new data were created or analysed in this study.

Acknowledgment

The authors thank Steffen Pottel for useful feedback and suggestions regarding the manu-
script. F B acknowledges the support by the Deutsche Forschungsgemeinschaft (DFG) within
the Research Training Group GRK 2583 ‘Modeling, Simulation and Optimization of Fluid
Dynamic Applications’. C N was partially supported by DFG-TRR181 and GRK-2583.

Appendix

A.1. Some technical observations

• The curvature on the boundary.
As the bottom boundary can be parameterized by (y1,h(y1)) the tangential is parallel to
(1,h ′). Taking into consideration the symmetry of the domain, the outward pointing con-
vention for n and the definition of τ , normalizing yields for the normal and tangent vectors

n± =± 1√
1+(h ′)

2

(
−h ′

1

)
, τ± =∓ 1√

1+(h ′)
2

(
1
h ′

)
. (84)
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In order to calculate the curvature we find by explicitly calculating

d
dy1

τ± =− h ′ ′

1+(h ′)
2 n± (85)

and as the arc length parameterization in direction of τ± is given by

λ(y1) =
ˆ y1

0

√
1+(h ′ (s))2 dson γ−, λ(y1) =

ˆ Γ

y1

√
1+(h ′ (s))2 dson γ+

one gets

d
dy1

λ(y1) =∓
√
1+(h ′)

2on γ±

and using (85)

d
dλ

τ± =∓ 1√
1+(h ′)

2

d
dy1

τ± =± h ′ ′(
1+(h ′)

2
) 3

2

n±,

implying

κ=± h ′ ′(
1+(h ′)

2
) 3

2

on γ±. (86)

• Argument for (33)

n · (τ ·∇)u= n · (τ ·∇)(uττ) = n · d
dλ

(uττ) = uτκ n · n+ n · τ d
dλ
uτ = κuτ . (87)

• Argument for (21), (38) and (53)
Using (87)

n · (u ·∇)u= uτn · (τ ·∇)u= κu2τ . (88)

A.2. Scaling of the curvature and friction coefficient with respect to the Rayleigh number

A.2.1. Scaling of the curvature with Ra. In what follows we want to compare two systems in
which we vary the height and temperature gap. Notice that, when varying these parameters,
the boundary-height h and therefore the curvature κ remains the same. In the corresponding
nondimensionalized systems instead, as the Rayleigh number changes, the boundary-height
function ĥ (and therefore the curvature κ̂) will too, as we are now going to show.

In order to clarify this point, we want to write the original system

∂tu+ u ·∇u+∇ p
ρ0

− ν∆u=−ᾱ(T−T0)g

∂t (T−T0)+ u ·∇(T−T0)−κ∆(T−T0) = 0

∇· u= 0 (89)
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Here the flow evolves in a rectangular domain of height H, the bottom boundary is held at
temperature T0 and the top boundary at temperature T1. The other parameters are: the density
ρ0 at temperature T0, the viscosity ν, the thermal diffusivity κ and the thermal expansion
coefficient ᾱ. Moreover we assume that the boundaries are not flat and call h= h(x1) the
boundary-height function. In order to nondimensionalize the problem we define the following
transformation:

x= Hx̂

t=
H2

κ
t̂

u=
κ
H
û

T= T0 +(T1 −T0) T̂

p= ρ0

(κ
H

)2
p̂ .

In the new (nondimensionalized) ·̂ variables the system is given by

1
Pr

(∂tû+ û ·∇û)+∇p̂−∆û= RaT̂ez

∂tT̂+ û ·∇T̂−∆T̂= 0

∇· û= 0 (90)

where

Pr=
ν

κ
(91)

and

Ra=
ᾱgδTH3

νκ
. (92)

We observe that the nondimensionalized boundary-height function ĥ is now rescaled:

h= Hĥ . (93)

Equations (92) and (93) yield two observations:

• Observation 1: changing the height gap H of the original system, while keeping the tem-
perature gap δT and boundary-height function h fixed, results in a change in ĥ, while also
changing Ra.

• Observation 2: changing the temperature gap δT of the original system, while keeping the
height gap H and boundary-height function h fixed, also result in a change in Ra, while not
changing the nondimensionalized boundary-height function ĥ.

Now recall that by (5) the curvature of the nondimensionalized system satisfies

κ∝ h ′ ′
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and notice that by the rescaling defined above we have

κ=
1
H
κ̂, κ ′ =

1
H2

κ̂ ′,

and that

∥κ̂∥W1,∞ ∝ H2 +H. (94)

We claim that by carefully changing both, the height gap H and also the temperature gap δT,
we can achieve any polynomial scaling of ∥κ̂∥W1,∞ with respect to Ra, i.e.

∥κ̂∥W1,∞ ∝ Raρ , (95)

for any exponent ρ. In order to show this, we compare two identical systems with height and
temperature gap (Hi, δTi), i = 1,2, where these parameter satisfy

H(2)

H(1)
=

(
δT(2)
δT(1)

) ρ
2−3ρ

. (96)

Then one has (at highest order as typical applications are in the regime H≫ 1)

∥κ̂(2)∥W1,∞

∥κ̂(1)∥W1,∞

(94)
≈
(
H(2)

H(1)

)2

=

(
H(2)

H(1)

)3ρ(H(2)

H(1)

)2−3ρ

(96)
=

(
H(2)

H(1)

)3ρ(δT(2)
δT(1)

)ρ
(92)
=

(
Ra(2)
Ra(1)

)ρ

.

Note that the extreme cases ρ= 3
2 and ρ= 0 are covered by systems with the same temperature

gap δT, respectively height H.

A.2.2. Scaling of the roughness coefficient with Ra. A similar argument as for the scaling of
the curvature shows a possible scaling of α with respect to Ra: the Navier-Slip boundary con-
ditions can be derived as the small amplitude and high oscillation limit of the boundary rough-
ness with no slip conditions (see [MD94]). In this derivation the slip coefficient is given by
the average of the height function of this roughness. Following the argument for the curvature
scaling the slip coefficient in the nondimensionalized system scales as α̂∼ ĥ and therefore a
similar argument yields any scaling of the slip coefficient with respect to the Rayleigh number.

A.3. Ideas for the proof with different bottom and top boundaries

In this paper we made the assumption that the top and bottom boundaries are described by the
same profile. This assumption is clearly not physical, but was made to not introduce further
technical aspects to the proof. In order to treat different profiles at the top and bottom boundar-
ies, some parts of the proof would need to be adjusted. Here, without giving details, we explain
where the main changes happen.

A key ingredient is that the Nusselt number identities hold in a similar fashion. In fact
proposition 2.1 would read

Nu= ⟨|∇T|2⟩= ⟨(uT−∇T) · n+⟩γ−(x2) ⩾
⟨(u2 − ∂2)T⟩

maxh+ −minh−
, (97)
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for any 0⩽ x2 <minh+ −maxh−, where h− and h+ are the bottom and top boundary-height
functions. In fact the first two identities are identical to (15) and (16) as the shape of the top
boundary does not influence the proofs, provided that x2 is sufficiently small with respect to
the height gap between the boundaries.

The proof for the lower bound in (97) is the same as the proof for (17) with the observation
that the contribution arising from the top boundary, i.e. the term in B, can be neglected because
of its sign in (19). Additionally note that for the proof of theorem 1.1 in this context it would
be more convenient to localize the Nusselt number at the bottom boundary in order to match
its definition and representation in (97).

Lemma 3.1 would need to be altered significantly. This would result in worse conditions
for the curvature in both our results, theorems 1.1 and 1.2. Notice that the background field,
i.e. (60) will now need to match the different top and bottom boundaries. Observe also that the
cancellation in (71) would not hold anymore, but one could obtain similar bounds by appro-
priately defining a vector field ζ that matches the normal at the boundaries. Then, as in (71),
for every y1 there exists an ȳ2 such that ∂2(ζ · u) = 0. The elliptic regularity results in lemma
3.6 will hold, albeit the introduction of technical nuisance.
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