
Chapter 1
Lower Bounds for the Advection-Hyperdiffusion
Equation

Fabian Bleitner, Camilla Nobili

Abstract Motivated by [7], we study the advection-hyperdiffusion equation in the
whole space in two and three dimensions with the goal of understanding the decay
in time of the H−1- and L2-norm of the solutions. We view the advection term as a
perturbation of the hyperdiffusion equation and employ the Fourier-splitting method
first introduced by Schonbek in [8] for scalar parabolic equations and later general-
ized to a broader class of equations including Navier-Stokes equations and magneto-
hydrodynamic systems. This approach consists of decomposing the Fourier space
along a sphere with radius decreasing in time. Combining the Fourier-splitting
method with classical PDE techniques applied to the hyperdiffusion equation we
find a lower bound for the H−1-norm by interpolation.

1.1 Introduction

We study the advection-hyperdiffusion equation in Rn given by

∂tθ +u ·∇θ +κ∆ 2θ = 0 in Rn × (0,∞),

∇ ·u = 0 in Rn × (0,∞),

θ(x,0) = θ0(x) in Rn,

(1.1)

where κ > 0 is the molecular diffusion coefficient and n= 2,3. This equation models
a hyperdiffusive scalar concentration field θ advected by a time dependent incom-
pressible vector field u. Analytical and numerical mixing estimates are derived by
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Miles and Doering in [6] for the classical advection-diffusion equation, obtained by
replacing ∆ 2 with −∆ in (1.1). Their numerical simulations indicate that the ”fila-
mentation length”

λ =
∥∇−1θ∥2

∥θ∥2
,

where
∥∇−1θ∥2

2 =
∫
Rn

(
|ξ |−1|θ̂ |

)2
dξ

reaches asymptotically (in time) a minimal scale, called the Batchelor scale. The
filamentation length λ defined by Miles and Doering is a measure of mixing. Dif-
ferent mixing measures have been introduced in the last few years (see the excellent
review paper [10] for an overview on this topic), but the H−1-norm proposed in [4],
is the one that better captures the mixing mechanism as it emphasises on the role of
large wave lengths in comparison to small wave lengths.

The rigorous proof for the convergence of λ to the Batchelor scale on bounded
domains is a hard problem and only few partial results are available. In particular
we want to cite the work in [9], where the author derives L1 estimates on Little-
wood–Paley decompositions for linear advection–diffusion equations on the torus.
Using the Fourier-splitting method introduced by Schonbeck [8], Pottel and the sec-
ond author in [7] showed that in the whole space and under suitable conditions on
the initial data, depending on decay rate assumptions on ∥u(t)∥2 and ∥∇u(t)∥∞, the
filamentation length λ either diverges to infinity or is bounded from below by a
function that converges to zero. In this second scenario, mixing is possible.

The problem of mixing for the advection-hyperdiffusion equation has already
been addressed in a few works. Here we want to mention the work in [1], where the
authors considered the advective Cahn-Hilliard equation

∂tθ +u ·∇θ +κ∆ 2θ = ∆(θ 3 −θ), (1.2)

on the n-dimensional torus, and study the effect of stirring on spontaneous phase
separation. For u = 0 and small κ solutions to (1.2) can spontaneously separate into
regions of high and low concentration. On the other hand, if u is sufficiently mix-
ing, the authors show that the separation effect will be dominated and the solution
converges exponentially to a homogeneous mixed state. In [2] the authors consid-
ered (1.1) where u is an incompressible flow with circular or cylindrical symmetry
in 2 and 3 space dimensions, respectively, and studied enhanced dissipation, a phe-
nomena intrinsically connected to mixing (see [11] where the authors establish a
precise connection between quantitative mixing rates in terms of decay of negative
Sobolev norms and enhanced dissipation time-scales). Exploiting the enhanced dis-
sipation arising from the combined action of the hyper-diffusion and the advection
to control both the nonlinearity as well as the destabilizing effect of the negative
Laplacean at large scale, the authors in [5] prove global existence for the modified
Kuramoto-Sivashinsky equation

∂tφ +u(y)∂xφ +
ν
2
|∇φ |2 +ν∆ 2φ +ν∆φ = 0
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on the 2-dimensional torus.
In this paper, we are interested in understanding how the lower bounds for λ

change when the diffusion operator in the advection-diffusion equation is substituted
by the bilaplacian. We apply the methods of [7] to bound solutions of the advection-
hyperdiffusion equation. Our main result is the lower bound for the energy of the
solution given suitable initial values and decay estimates on the flow.

Theorem 1.1 (Lower Bound for the Energy). Let the initial data satisfy

θ0 ∈ L1 ∩L2

and
|θ̂0(ξ )| ≥ M

for |ξ | ≤ δ and some constant M > 0. Moreover assume

∥u(t)∥2 ∼ (1+ t)−α (1.3)

with α > 3
4 . Then for sufficiently large t the solution θ of (1.1) is bounded from

below by

∥θ(t)∥2 ≥
ω

1
2

n−1

2n
1
2

Mδ
n
2 e−κδ 4

(1+ t)−
n
8 ,

where ωn−1 is the measure of the (n−1)-sphere.

As a consequence of the energy bound one gets a lower bound for the filamenta-
tion length and the H̊−1-norm.

Theorem 1.2 (Mixing Bound). Let the assumptions of Theorem 1.1 be satisfied and
additionally suppose θ0 ∈ H1 and

∥∇u(t)∥∞ = c∇u(1+ t)−ν . (1.4)

Then there exist constants c1,c2 > 0 depending on c∇u, n, M, α , δ , κ , ∥θ0∥1, ∥θ0∥2
and ∥∇θ0∥2 such that for sufficiently large t

∥∇−1θ(t)∥2 ≥ c1(1+ t)−
n
8+

1
4 f∇u(t),

λ ≥ c2(1+ t)
1
4 f∇u(t),

(1.5)

where

f∇u(t) =


e−

c∇u
1−ν ((1+t)1−ν−1) for 0 < ν < 1,

1 for ν = 1,

(1+ t)c∇u e−
c∇u
ν−1 (1−(1+t)−(ν−1)) for ν > 1.

(1.6)
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The long time behaviour of these bounds is given in Table 1.1, where

∥∇−1θ∥2 ≥ f (t) t→∞−→ f∞,

λ ≥ g(t) t→∞−→ g∞.

0 < ν < 1 ν = 1 ν > 1

n = 2
f∞ = 0
g∞ = 0

f∞ = const
g∞ = ∞

f∞ = ∞
g∞ = ∞

n = 3 f∞ = 0

g∞ = 0

f∞ = 0

g∞ = ∞

f∞ =


0 if c∇u <

1
8

const if c∇u =
1
8

∞ if c∇u >
1
8

g∞ = ∞

Table 1.1: Long time behaviour of the mixing bounds.

Oragnization of the paper

In Section 1.2 we introduce the Fourier-splitting method, which consists in splitting
the whole Fourier space in a ball with decreasing in time radius and its complement.
This allows us to estimate the time derivative of the L2-norm of θ on the whole
space by the L2-norm in this ball. Integration in time then yields an upper bound on
∥θ(t)∥2, under some specific decay assumptions on ∥u(t)∥2.

In Section 1.3 we prove lower bounds for ∥θ(t)∥2 by viewing the solution of (1.1)
as a perturbation of the hyperdiffusion equation. In particular, in Subsection 1.3.3 we
show that, under suitable decay assumptions on the stirring field, the perturbation
decays at least as fast as the solution of the hyperdiffusion equation, yielding the
result Theorem 1.1.

Finally, in Section 1.4 we derive upper bounds for the gradient of the solution
yielding the result in Theorem 1.2 by interpolation.

Notation

Norms are considered over the whole space unless differently stated. a ≲ b denotes
a ≤ cb for a constant c > 0. Similarly a ∼ b and a ≳ b with a = cb and a ≥ cb. As
we did not attempt to optimize the constant prefactors in the upper/lower bounds,
the dependency of constants on parameters like the dimension n, the molecular dif-
fusivity κ or the decay exponents α and ν (see (1.3),(1.4)) will often be hidden to
increase the readability of the manuscript, unless tracking is required for the argu-
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ment to work. Note that in few estimates these constants that we do not want to track
may change from line to line, without being renamed.

1.2 Upper Bound for the Advection-Hyperdiffusion Equation

In this section we introduce the Fourier-splitting method and prove upper bounds for
the advection-hyperdiffusion equation under suitable decay of the flow field. This
bound will later be used to derive upper bounds for the perturbation and the gradient
of the solution.

Lemma 1.1 (Upper Bound for the Advection-Hyperdiffusion Equation). Let the
initial data satisfy

θ0 ∈ L1 ∩L2

and let u(·, t) ∈ L2 be a divergence-free vector field satisfying

∥u(t)∥2 ∼ (1+ t)−α (1.7)

with α > 6−n
8 . Then there exists a constant c > 0 depending on n, α , κ , ∥θ0∥1 and

∥θ0∥2 such that
∥θ(t)∥2 ≤ c(1+ t)−

n
8 .

Proof. The proof consists of 3 steps. First we bound the derivative of the L2-norm
of θ over the whole space by the L2-norm of θ over a ball with radius decreasing
in time. Second we show, by integrating this ODE in time, that if θ decays with
some rate in a specific range then it actually decays faster. Third we iterate to get
the maximal decay rate of this range resulting in the final bound.

Step 1:

Testing (1.1) with θ , using partial integration, one gets

1
2

d
dt
∥θ∥2

2 =−κ
∫
Rn

θ∆ 2θ dx−
∫
Rn

θu ·∇θ dx =−κ∥∆θ∥2
2, (1.8)

where the advection term vanishes by the incompressibility condition of u as∫
Rn

θu ·∇θ dx =−
∫
Rn

θ 2∇ ·u dx−
∫
Rn

θu ·∇θ dx =−
∫
Rn

θu ·∇θ dx.

By Plancherel (1.8) can be expressed in Fourier space via

d
dt
∥θ̂∥2

2 =−2κ∥ξ 2θ̂∥2
2. (1.9)

Define the set
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S(t) = {ξ ∈ Rn | |ξ | ≤ r(t)}

with r =
(

β
2κ(1+t)

) 1
4
, where β > 0 is a constant to be specified later and denote its

complement by Sc. Then by (1.9)

d
dt
∥θ̂∥2

2 =−2κ∥ξ 2θ̂∥2
2 ≤−2κ∥ξ 2θ̂∥2

L2(Sc) =−2κ
∫

Sc
|ξ |4|θ̂ |2dξ

≤−2κr4
∫

Sc
|θ |2dξ =−2κr4

(
∥θ̂∥2

2 −∥θ̂∥2
L2(S)

)
=− β

1+ t

(
∥θ̂∥2

2 −∥θ̂∥2
L2(S)

)
such that

d
dt

(
(1+ t)β∥θ̂∥2

2

)
= β (1+ t)β−1∥θ̂∥2

2 +(1+ t)β d
dt
∥θ̂∥2

2

≤ β (1+ t)β−1∥θ̂∥2
2 −β (1+ t)β−1

(
∥θ̂∥2

2 −∥θ̂∥2
L2(S)

)
= β (1+ t)β−1∥θ̂∥2

L2(S).

(1.10)

Step 2:

Assume
∥θ∥2 ≲ A(1+ t)−γ (1.11)

with A depending on κ , n, ∥θ0∥1 and ∥θ0∥2 for some γ ≥ 0. Notice that by (1.9) the
assumption is fulfilled for γ = 0. Writing (1.1) in Fourier space

θ̂t =−κ|ξ |4θ̂ − û ·∇θ (1.12)

and its solution is given by

θ̂(t,ξ ) = e−κ|ξ |4t θ̂0(ξ )−
∫ t

0
e−κ |ξ |4(t−s)û ·∇θ(s,ξ ) ds.

Young’s inequality yields

|θ̂(ξ )|2 = e−2κ|ξ |4t |θ̂0(ξ )|2 −2e−κ |ξ |4t θ̂0(ξ )
∫ t

0
e−κ |ξ |4(t−s)û ·∇θ(s,ξ ) ds

+

(∫ t

0
e−κ|ξ |4(t−s)û ·∇θ(s,ξ ) ds

)2

≤ 2e−2κ |ξ |4t |θ̂0(ξ )|2 +2
(∫ t

0
e−κ|ξ |4(t−s)û ·∇θ(s,ξ ) ds

)2

≤ 2e−2κ |ξ |4t |θ̂0(ξ )|2 +2
(∫ t

0

∣∣∣û ·∇θ
∣∣∣(s,ξ ) ds

)2

.

(1.13)
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Using the incompressibility of u, the advection term can be estimated by∣∣∣û ·∇θ
∣∣∣(ξ ) = ∣∣∣∣∫

Rn
u ·∇θeiξ ·xdx

∣∣∣∣= ∣∣∣∣∫
Rn

uθ ·∇eiξ ·xdx
∣∣∣∣= ∣∣∣∣∫

Rn
uθ · iξ eiξ ·xdx

∣∣∣∣
≤ |ξ | ∥u∥2∥θ∥2 ≲ A|ξ |(1+ t)−α−γ ,

(1.14)
where in the last inequality we used assumptions (1.7) and (1.11). Using ln(1+
t) ≲ 1

ε (1+ t)ε with 0 < ε ≪ 1, the integral on the right-hand side of (1.13) can be
bounded by∫ t

0

∣∣∣û ·∇θ
∣∣∣(s,ξ ) ds ≤ A|ξ |

∫ t

0
(1+ s)−α−γ ds

= A|ξ |


1

1−(α+γ)

(
(1+ t)1−(α+γ)−1

)
for α + γ < 1

ln(1+ t) for α + γ = 1
1

α+γ−1

(
1− (1+ t)−(γ+α)+1

)
for α + γ > 1

≤ A|ξ |


1

1−(α+γ) (1+ t)1−(α+γ) for α + γ < 1
1
ε (1+ t)ε for α + γ = 1

1
α+γ−1 for α + γ > 1

≤ A|ξ |hα+γ(t),
(1.15)

where

hα+γ(t) =


1

1−(α+γ) (1+ t)1−(α+γ) for α + γ < 1
1
ε (1+ t)ε for α + γ = 1

1
α+γ−1 for α + γ > 1

Calculating

∥ξ∥2
L2(S) =

∫
|ξ |≤r(t)

|ξ |2 dξ = ωn−1

∫ r(t)

0
ρn+1dρ =

ωn−1

n+2
rn+2

=
ωn−1

n+2

(
β

2κ(1+ t)

) n+2
4

(1.16)

we can integrate (1.13) over S and, using (1.15) and Lemma 1.5 (proven in the
Appendix), find



8 F. Bleitner, C. Nobili

∥θ̂∥2
L2(S) = 2

∥∥∥e−κ |ξ |4t θ̂0

∥∥∥2

L2(S)
+2

∥∥∥∥∫ t

0

∣∣∣û ·∇θ
∣∣∣(s,ξ ) ds

∥∥∥∥2

L2(S)

≲
∥∥∥e−κ |ξ |4t θ̂0

∥∥∥2

L2(S)
+A2 ∥ξ∥2

L2(S) h2
α+γ(t)

≲
∥∥∥e−κ |ξ |4t θ̂0

∥∥∥2

2
+A2

(
β
κ

) n+2
4
(1+ t)−

n+2
4 h2

α+γ(t)

≲ (κt)−
n
4 ∥θ0∥2

1 +A2
(

β
κ

) n+2
4
(1+ t)−

n+2
4 h2

α+γ(t).

(1.17)

Plugging (1.17) into (1.10) one gets

d
dt

(
(1+ t)β∥θ̂∥2

2

)
= β (1+ t)β−1∥θ̂∥2

L2(S)

≲ βκ− n
4 (1+ t)β−1− n

4 ∥θ0∥2
1

+A2β
n+6

4 κ− n+2
4 (1+ t)β− n+6

4 h2
α+γ(t).

Choosing β big enough such that the right-hand side becomes a polynomial with
positive exponent and integrating in time yields

(1+ t)β∥θ̂∥2
2 −∥θ̂0∥2

2

≲ κ− n
4

β
β − n

4
∥θ̂0∥2

1

(
(1+ t)β− n

4 −1
)

+A2κ− n+2
4 β

n+6
4


1

1−(α+γ)
1

β− n
4−2(α+γ)+ 3

2

(
(1+ t)β− n

4−2(α+γ)+ 3
2 −1

)
ε−2 1

2ε+β− n
4− 1

2

(
(1+ t)2ε+β− n

4− 1
2 −1

)
1

α+γ−1
1

β− n
4− 1

2

(
(1+ t)β− n

4− 1
2 −1

)
such that dividing by (1+ t)β results in

∥θ̂∥2
2 ≲ ∥θ̂0∥2

2(1+ t)−β +κ− n
4

β
β − n

4
∥θ̂0∥2

1(1+ t)−
n
4

+A2κ− n+2
4 β

n+6
4


1

1−(α+γ)
1

β− n
4−2(α+γ)+ 3

2
(1+ t)−

n
4−2(α+γ)+ 3

2

ε−2 1
2ε+β− n

4− 1
2
(1+ t)2ε− n

4− 1
2

1
α+γ−1

1
β− n

4− 1
2
(1+ t)−

n
4− 1

2

and for α + γ < 3
4

∥θ̂∥2
2 ≤ c(1+ t)−

n
4−2(α+γ)+ 3

2 ,

while for α + γ ≥ 3
4

∥θ̂∥2
2 ≤ c(1+ t)−

n
4 ,
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where in both cases the constant depends on n, α , γ , κ , ∥θ∥1 and ∥θ∥2.

Step 3:

In the previous Step we have shown that assuming ∥θ∥2 decays with rate γ0 it ac-
tually decays with rate γ1 = n

8 +α + γ0 − 3
4 if α + γ0 < 3

4 or with rate γ1 = n
8 if

α + γ0 ≥ 3
4 . Iterating through this process one finds

γ j+1 =
n
8
− 3

4
+α + γ j

such that the condition α > 6−n
8 ensures γ j is a strictly increasing sequence resulting

in the desired decay rate.

1.3 Lower Bound for the Advection-Hyperdiffusion Equation

For the lower bound on the solution of the advection-hyperdiffusion equation we
first prove a lower bound for the hyperdiffusion equation and then show that the
perturbation that arises because of the advection decays at least with the same rate.

1.3.1 Lower Bound for the Hyperdiffusion Equation

Lemma 1.2 (Lower Bound for the Hyperdiffusion Equation). Let T solve

∂tT +κ∆ 2T = 0 in Rn × (0,∞),

T (0,x) = θ0(x) in Rn (1.18)

and θ0 ∈ L2 satisfy
|θ̂0(ξ )| ≥ M (1.19)

for |ξ | ≤ δ . Then for t ≥ 1

∥T (t)∥2 ≥ ω
1
2

n−1n−
1
2 Mδ

n
2 e−κδ 4

(1+ t)−
n
8 ,

where ωn−1 is the measure of the n−1-sphere.

Proof. As the Fourier transform of (1.18) is given by

∂t T̂ +κ|ξ |4T̂ = 0 in Rn × (0,∞),

T̂ (0,ξ ) = θ̂0(ξ ) in Rn
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its solution can be represented by

T̂ (t,ξ ) = θ̂0(ξ )e−κ|ξ |4t ,

which by Plancherel and assumption (1.19) yields∫
Rn

|T |2dx =
∫
Rn

|T̂ |2dξ =
∫
Rn

|θ̂0|2e−2κ |ξ |4tdξ ≥ M2
∫
|ξ |≤δ

e−2κ|ξ |4t dξ .

(1.20)
By passing to spherical coordinates and the change of variables µ = (2κt)

1
4 r the

integral can be expressed by∫
|ξ |≤δ

e−2κ |ξ |4t dξ = ωn−1

∫ δ

0
e−2κr4trn−1 dr

= ωn−1(2κt)−
n
4

∫ (2κt)
1
4 δ

0
e−µ4

µn−1 dµ,

(1.21)

where ωn−1 is the measure of the n− 1-sphere. For t ≥ 1 we estimate this integral
by

∫ (2κt)
1
4 δ

0
e−µ4

µn−1 dµ ≥
∫ (2κ)

1
4 δ

0
e−µ4

µn−1 dµ ≥ e−2κδ 4
∫ (2κ)

1
4 δ

0
µn−1 dµ

=
1
n

e−2κδ 4
(2κ)

n
4 δ n.

(1.22)
Combining (1.20), (1.21) and (1.22) yields the claim as

∫
Rn

|T |2dx ≥ M2
∫
|ξ |≤δ

e−2κ|ξ |4t dξ = M2ωn−1(2κt)−
n
4

∫ (2κt)
1
4 δ

0
e−µ4

µn−1 dµ

≥ M2 ωn−1

n
e−2κδ 4

δ n(1+ t)−
n
4 .

1.3.2 Upper Bound for the Perturbation

Lemma 1.3. The perturbation η = θ −T solves

∂tη +κ∆ 2η +u ·∇θ = 0 in Rn × (0,∞),

η(x,0) = 0 in Rn.
(1.23)

Suppose the assumptions of Theorem 1.1 are fulfilled. Then there exists a constant
c > 0 depending on n, α , κ , ∥θ0∥1 and ∥θ0∥2 such that
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∥η∥2 ≤ c(1+ t)
3
8− n

8− α
2 if 1− n

8
< α <

5
4

∥η∥2 ≤ c(1+ t)−
1
4− n

8 if α ≥ 5
4
.

The proof works similar to Lemma 1.1 based on the Fourier-splitting method.

Proof. Testing (1.23) with η , using partial integration and η = θ −T , yields

1
2

d
dt
∥η∥2

2 =−κ
∫
Rn

η∆ 2η dx−
∫
Rn

ηu ·∇θ dx

=−κ∥∆η∥2
2 −

∫
Rn

θu ·∇θ dx+
∫
Rn

Tu ·∇θ dx.

The second term on the right-hand side vanishes as by partial integration and the
incompressibility condition on u as∫

Rn
θu ·∇θ dx =−

∫
Rn

θ 2∇ ·u dx−
∫
Rn

θu ·∇θ dx =−
∫
Rn

θu ·∇θ dx

and the third term is given by∫
Rn

Tu ·∇θ dx =−
∫
Rn

T θ∇ ·u dx−
∫
Rn

θu ·∇T dx =−
∫
Rn

θu ·∇T dx

such that Hölder’s inequality yields

1
2

d
dt
∥η∥2

2 =−κ∥∆η∥2
2 +

∫
Rn

Tu ·∇θ dx ≤−κ∥∆η∥2
2 +∥∇T∥∞∥u∥2∥θ∥2.

Analogous to before define

S(t) = {ξ ∈ Rn | |ξ | ≤ r(t)} ,

where r =
(

β
2κ(1+t)

) 1
4

with a constant β > 0. Then from Plancherel follows

d
dt
∥η∥2

2 =−2κ
∥∥|ξ |2η̂

∥∥2
2 +2∥∇T∥∞∥u∥2∥θ∥2

≤−2κ
∫

Sc
|ξ |4|η̂ |2dξ +2∥∇T∥∞∥u∥2∥θ∥2

≤−β (1+ t)−1
∫

Sc
|η̂ |2dξ +2∥∇T∥∞∥u∥2∥θ∥2

=−β (1+ t)−1
(
∥η̂∥2

2 −∥η̂∥2
L2(S)

)
+2∥∇T∥∞∥u∥2∥θ∥2

such that
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d
dt

(
(1+ t)β∥η∥2

2

)
= β (1+ t)β−1∥η∥2

2 +(1+ t)β d
dt
∥η∥2

2

= β (1+ t)β−1∥η̂∥2
L2(S)+2(1+ t)β∥∇T∥∞∥u∥2∥θ∥2.

(1.24)

In order to estimate the first term, the solution of (1.23) in Fourier space is given by

η̂(t,ξ ) =−
∫ t

0
e−κ|ξ |4(t−s)û ·∇θ(ξ ) ds

such that by (1.14), the decay assumption (1.7), Lemma 1.1 and (1.16)

∥η̂∥2
L2(S) =

∫
S

(∫ t

0
e−κ |ξ |4(t−s)û ·∇θ(ξ ) ds

)2

dξ

≤
∫

S

(∫ t

0
e−κ |ξ |4(t−s)|ξ |∥u∥2∥θ∥2 ds

)2

dξ

≲
∫

S
|ξ |2

(∫ t

0
(1+ s)−α− n

8 ds
)2

dξ

=
∫

S
|ξ |2

(
1

α + n
8 −1

(
1− (1+ t)−α− n

8+1
))2

dξ

≤
(

α +
n
8
−1

)−2 ∫
S
|ξ |2 dξ

∼
(

β
κ(1+ t)

) n
4+

1
2

(1.25)

as α > 1− n
8 . Combining (1.25) and (1.24), Lemma 1.5 (proven in the Appendix),

the decay assumption (1.7) and Lemma 1.1 we find

d
dt

(
(1+ t)β∥η∥2

2

)
= β (1+ t)β−1∥η̂∥2

L2(S)+2(1+ t)β∥∇T∥∞∥u∥2∥θ∥2

≲ β
n
4+

3
2 κ− n

4− 1
2 (1+ t)β− 3

2− n
4 +(1+ t)β∥∇T∥∞∥u∥2∥θ∥2

≲ β
n
4+

3
2 (1+ t)β− 3

2− n
4 +(1+ t)β− 1

4− n
4−α .

Choosing β > 1
2 +

n
4 ,

3
4 +

n
4 +α and integrating in time yields

(1+ t)β∥η∥2
2 ≲

1
β − n

4 +
1
2

(
(1+ t)β− n

4− 1
2 −1

)
+

1
β − n

4 −α + 3
4

(
(1+ t)β− n

4−α+ 3
4 −1

)
≲ (1+ t)β− n

4− 1
2 +(1+ t)β− n

4−α+ 3
4

such that dividing by (1+ t)β results in the desired decay as
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∥η∥2
2 ≲ (1+ t)−

n
4− 1

2 +(1+ t)−
n
4−α+ 3

4 .

1.3.3 Lower Bound for the Energy

We are now able to prove Theorem 1.1, i.e. the lower bound for the energy.

Proof (Theorem 1.1). As η = θ −T and therefore ∥T∥2 = ∥η −θ∥2 ≤∥θ∥2+∥η∥2
the energy of the solution of the advection-hyperdiffusion equation can be bounded
by ∥θ∥2 ≥ ∥T∥2 −∥η∥2. Lemma 1.2 yields a lower bound for T , while Lemma 1.3
implies an upper bound on η such that

∥θ∥2 ≥ ∥T∥2 −∥η∥2 ≥ c̃Mδ
n
2 e−κδ 4

(1+ t)−
n
8 + c(1+ t)−

n
8+

3
8−min{ α

2 ,
5
8}

≥ c̃
(

Mδ
n
2 e−κδ 4 − c(1+ t)

3
8−min{ α

2 ,
5
8}
)
(1+ t)−

n
8 ,

where c̃ = ω
1
2

n−1n−
1
2 . By assumption α > 3

4 such that for all t > t1 given by

Mδ
n
2 e−κδ 4

=
c
2
(1+ t1)

3
8−min{ α

2 ,
5
8}

the solution decays at most by

∥θ∥2 ≥
ω

1
2

n−1

2n
1
2

Mδ
n
2 e−κδ 4

(1+ t)−
n
8 .

1.4 Lower Bounds on the Mixing Norms

In order to get lower bounds for the mixing norms we need an upper bound for the
gradient of the solution as the interpolation takes the reciprocal of this bound.

1.4.1 Upper Bound for the Gradient of the
Advection-Hyperdiffusion Equation

Lemma 1.4 (Upper Bound for the Gradient of the Advection-Hyperdiffusion
Equation). Let the assumptions of Theorem 1.1 be fulfilled and additionally suppose

∥∇u∥∞ = c∇u(1+ t)−ν . (1.26)

Then there exists a constant c > 0 depending on c∇u, n, α , κ , ∥θ0∥1, ∥θ0∥2 and
∥∇θ0∥2 such that
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∥∇θ∥2 ≤ c(1+ t)−
n
8− 1

4 e
c∇u
1−ν ((1+t)1−ν−1) if 0 < ν < 1,

∥∇θ∥2 ≤ c(1+ t)−
n
8− 1

4 if ν = 1,

∥∇θ∥2 ≤ c(1+ t)−
n
8− 1

4−c∇u e
c∇u
ν−1 (1−(1+t)−(ν−1)) if ν > 1.

Proof. Differentiating (1.1) yields

∂t∇θ +κ∇∆ 2θ +∇(u ·∇θ) = 0

such that testing with ∇θ and partial integration implies

1
2

d
dt
∥∇θ∥2

2 =−κ
∫
Rn

∇θ ·∇∆ 2θ dx−
∫
Rn

∇θ ·∇(u ·∇θ) dx

=−κ∥∆∇θ∥2
2 −∑

i, j

∫
Rn

∂iθ∂iu j∂ jθ dx−∑
i, j

∫
Rn

∂iθu j∂i∂ jθ dx.

By partial integration and the impressibility condition on u the third term on the
right-hand side vanishes as

∑
i, j

∫
Rn

∂iθu j∂i∂ jθ dx =−∑
i, j

∫
Rn

∂ j∂iθu j∂iθ dx−∑
i, j

∫
Rn

∂iθ∂ ju j∂iθ dx

=−∑
i, j

∫
Rn

∂iθu j∂i∂ jθ dx.

Therefore Hölder’s inequality implies

1
2

d
dt
∥∇θ∥2

2 =−κ∥∆∇θ∥2
2 −∑

i, j

∫
Rn

∂iθ∂iu j∂ jθ dx

≤−κ∥∆∇θ∥2
2 +∥∇u∥∞∥∇θ∥2

2.

(1.27)

Similar to before define

S(t) = {ξ ∈ Rn | |ξ | ≤ r(t)} ,

where r =
(

β
2κ(1+t)

) 1
4

with a constant β > 0. Then Plancherel and Lemma 1.1 imply

∥∆∇θ∥2
2 =

∫
Rn

|ξ |6|θ̂ |2dξ ≥
∫

Sc
|ξ |6|θ̂ |2dξ ≥ r4

∫
Sc
|ξ |2|θ̂ |2dξ

= r4
(
∥∇θ∥2

2 −
∫

S
|ξ |2|θ̂ |2dξ

)
≥ r4

(
∥∇θ∥2

2 − r2
∫

S
|θ̂ |2dξ

)
≥ r4 (∥∇θ∥2

2 − r2∥θ∥2
2
)
≥ r4

(
∥∇θ∥2

2 − cr2(1+ t)−
n
4

)
.

(1.28)

Combining (1.27) and (1.28), the definition of r yields
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d
dt
∥∇θ∥2

2 ≤−2κr4
(
∥∇θ∥2

2 − cr2(1+ t)−
n
4

)
+2∥∇u∥∞∥∇θ∥2

2

= 2
(
∥∇u∥∞ −β (1+ t)−1)∥∇θ∥2

2 + cβ
3
2 (1+ t)−

n
4− 3

2 .

By Grönwall’s inequality and the decay assumption (1.26)

∥∇θ∥2
2 ≤ e2

∫ t
0 ∥∇u∥∞−β (1+τ)−1 dτ∥∇θ0∥2

2

+ cβ
3
2

∫ t

0
e2

∫ t
τ ∥∇u∥∞−β (1+s)−1 ds(1+ τ)−

n
4− 3

2 dτ

≤ e2
∫ t

0 c∇u(1+τ)−ν−β (1+τ)−1 dτ∥∇θ0∥2
2

+ cβ
3
2

∫ t

0
e2

∫ t
τ c∇u(1+s)−ν−β (1+s)−1 ds(1+ τ)−

n
4− 3

2 dτ,

(1.29)

where the second exponentiated integral can be calculated by

e2
∫ t

τ c∇u(1+s)−ν−β (1+s)−1 ds =


e2( c∇u

1−ν ((1+t)1−ν−(1+τ)1−ν)−β (ln(1+t)−ln(1+τ)))

e2(c∇u−β )(ln(1+t)−ln(1+τ))

e2( c∇u
ν−1 ((1+τ)−(ν−1)−(1+t)−(ν−1))−β (ln(1+t)−ln(1+τ)))

=

(
1+ τ
1+ t

)2β


e2 c∇u
1−ν ((1+t)1−ν−(1+τ)1−ν) if ν < 1( 1+t

1+τ
)2c∇u if ν = 1

e2 c∇u
ν−1 ((1+τ)−(ν−1)−(1+t)−(ν−1)) if ν > 1

Choosing β > 1
4 +

n
8 + c∇u we can calculate the whole expression on the right-hand

side of (1.28). In case 0 < ν < 1

∥∇θ∥2
2 ≤ (1+ t)−2β e2 c∇u

1−ν ((1+t)1−ν−1)∥∇θ0∥2
2

+ cβ
3
2 (1+ t)−2β

∫ t

0
(1+ τ)2β− n

4− 3
2 e2 c∇u

1−ν ((1+t)1−ν−(1+τ)1−ν) dτ

≤ (1+ t)−2β e2 c∇u
1−ν ((1+t)1−ν−1)∥∇θ0∥2

2

+ cβ
3
2 (1+ t)−2β e2 c∇u

1−ν ((1+t)1−ν−1)
∫ t

0
(1+ τ)2β− n

4− 3
2 dτ

= (1+ t)−2β e2 c∇u
1−ν ((1+t)1−ν−1)∥∇θ0∥2

2

+
cβ

3
2

2β − n
4 − 1

2

(1+ t)−2β e2 c∇u
1−ν ((1+t)1−ν−1)

(
(1+ τ)2β− n

4− 1
2 −1

)
≤ c(1+ t)−

n
4− 1

2 e2 c∇u
1−ν ((1+t)1−ν−1).

In case ν = 1
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∥∇θ∥2
2 ≤ (1+ t)2(c∇u−β )∥∇θ0∥2

2 + cβ
3
2 (1+ t)2(c∇u−β )

∫ t

0
(1+ τ)2β−2c∇u− n

4− 3
2 dτ

= (1+ t)2(c∇u−β )∥∇θ0∥2
2

+
cβ

3
2

2β −2c∇u − n
4 − 1

2

(1+ t)2(c∇u−β )
(
(1+ t)2β−2c∇u− n

4− 1
2 −1

)
≤ c(1+ t)−

n
4− 1

2 .

In case ν > 1

∥∇θ∥2
2 ≤ (1+ t)−2β e2 c∇u

ν−1 (1−(1+t)−(ν−1))∥∇θ0∥2
2

+ cβ
3
2 (1+ t)−2β e2 c∇u

ν−1 (1−(1+t)−(ν−1))

·
∫ t

0
e2 c∇u

ν−1 ((1+τ)−(ν−1)−1)(1+ τ)2β− n
4− 3

2 dτ

≲ (1+ t)−2β e2 c∇u
ν−1 (1−(1+t)−(ν−1))∥∇θ0∥2

2

+ cβ
3
2 (1+ t)−2β e2 c∇u

ν−1 (1−(1+t)−(ν−1))
∫ t

0
(1+ τ)2β−2c∇u− n

4− 3
2 dτ

= (1+ t)−2β e2 c∇u
ν−1 (1−(1+t)−(ν−1))∥∇θ0∥2

2

+
cβ

3
2

2β −2c∇u − n
4 − 1

2

e2 c∇u
ν−1 (1−(1+t)−(ν−1))

· (1+ t)−2β
(
(1+ τ)2β−2c∇u− n

4− 1
2 −1

)
≤ ce2 c∇u

ν−1 (1−(1+t)−(ν−1))(1+ t)−2c∇u− n
4− 1

2 .

Combining Theorem 1.1 and Lemma 1.4 we are now able to prove the lower bounds
for the mixing norms.

Proof (Theorem 1.2). By Plancherel and Hölder’s inequality

∥θ∥2
2 = ∥θ̂∥2

2 =
∥∥|ξ |θ̂ |ξ |−1θ̂

∥∥
1 ≤

∥∥|ξ |θ̂∥∥2

∥∥|ξ |−1θ̂
∥∥

2 = ∥∇θ∥2∥∇−1θ∥2

such that using the lower bound on θ of Theorem 1.1 and the upper bound on ∇θ
of Lemma 1.4 one finds

∥∇−1θ∥2 ≥ ∥θ∥2
2∥∇θ∥−1

2

≳ (1+ t)−
n
8+

1
4


e−

c∇u
1−ν ((1+t)1−ν−1) if 0 < ν < 1,

1 if ν = 1,

(1+ t)c∇u e−
c∇u
ν−1 (1−(1+t)−(ν−1)) if ν > 1

and for the filamentation length
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λ =
∥∇−1θ∥2

∥θ∥2
≥ ∥θ∥2∥∇θ∥−1

2

≳ (1+ t)
1
4


e−

c∇u
1−ν ((1+t)1−ν−1) if 0 < ν < 1,

1 if ν = 1,

(1+ t)c∇u e−
c∇u
ν−1 (1−(1+t)−(ν−1)) if ν > 1.

1.5 Conclusion

Using the Fourier-splitting method we were able to prove upper bounds for the
advection-hyperdiffusion equation under suitable decay assumptions on the velocity
field. In turn, viewing this equation as a perturbation of the hyperdiffusion equation
provides lower bounds on the energy decay. Interpolation then results in bounds on
the mixing norms. In particular if the velocity field is decaying sufficiently fast the
filamentation length diverges to infinity.

1.6 Appendix

The following properties of the hyperdiffusion kernel can be found in [3].

Proposition 1.1. The hyperdiffusion kernel is given by

G(t,x) = αnt−
n
4 fn

( |x|
t

1
4

)
,

where αn is a normalization constant and

•
fn(η) = η1−n

∫ ∞

0
e−s4

(ηs)
n
2 J n−2

2
(ηs) ds,

where Jν denotes the ν-tv Bessel function of the first kind.
• there exists Kn > 0 and µn > 0 such that

| fn(η)| ≤ Kne−µnη
4
3

for all η ≥ 0.
•

f ′n(η) =−η fn+2(η)

for all n ≥ 1.

Lemma 1.5 (Bounds for the hyperdiffusion equation). For 1 ≤ p < ∞ and t > 0
the hyperdiffusion kernel fulfills
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∥G∥p ≲n,p t−
n
4

(
1− 1

p

)

∥∇G∥p ≲n,p t−
n
4

(
1− 1

p

)
− 1

4

and the solution of the hyperdiffusion equation (1.18) can be bounded by

∥T∥2 ≲ (κt)−
n
8 ∥θ0∥1

∥∇T∥2 ≲ (κt)−
n
8− 1

4 ∥θ0∥1

∥∇T∥∞ ≲ (κt)−
n
8− 1

4 ∥θ0∥2

and ∥∥∥e−κ|ξ |4t θ̂
∥∥∥

2
≲ (κt)−

n
8 ∥θ0∥1.

Proof. By passing to spherical coordinates, the change of variables ρ = rt−
1
4 and

Proposition 1.1 one gets

∥G∥p
p = ap

nt−
pn
4

∫
Rn

∣∣∣∣ fn

( |x|
t

1
4

)∣∣∣∣p

dx ∼ t−
pn
4

∫ ∞

0
rn−1

∣∣∣∣ fn

(
r

t
1
4

)∣∣∣∣p

dr

= t−
n
4 (p−1)

∫ ∞

0
ρn−1 | fn (ρ)|p dρ ≲ t−

n
4 (p−1)

∫ ∞

0
ρn−1e−pµnρ

4
3 dρ ≲ t−

n
4 (p−1)

and similarly

∥∇G∥p
p = ap

nt−
pn
4

∫
Rn

∣∣∣∣∇ fn

( |x|
t

1
4

)∣∣∣∣p

dx ∼ t−
p
4 (n+1)

∫
Rn

∣∣∣∣ f ′n

( |x|
t

1
4

)∣∣∣∣p

dx

∼ t−
p
4 (n+1)

∫ ∞

0
rn−1

∣∣∣∣ f ′n

(
r

t
1
4

)∣∣∣∣p

dr ∼ t−
n
4 (p−1)− p

4

∫ ∞

0
ρn−1| f ′n(ρ)|p dρ

= t−
n
4 (p−1)− p

4

∫ ∞

0
ρn| fn+2(ρ)|p dρ ≲ t−

n
4 (p−1)− p

4

∫ ∞

0
ρne−pµn+2η

4
3 dρ

≲ t−
n
4 (p−1)− p

4 .

The bounds on T follow directly as

T (t, ·) = G(κt, ·)⋆T0(·),

Young’s inequality for convolution and the previous bounds on G yield

∥T∥2 ≤ ∥G⋆θ0∥2 ≤ ∥G∥2∥θ0∥1 ≲ (κt)−
n
8 ∥θ0∥1

∥∇T∥2 ≤ ∥∇G⋆θ0∥2 ≤ ∥∇G∥2∥θ0∥1 ≲ (κt)−
n
8− 1

4 ∥θ0∥1

∥∇T∥∞ ≤ ∥∇G⋆θ0∥∞ ≤ ∥∇G∥2∥θ0∥2 ≲ (κt)−
n
8− 1

4 ∥θ0∥2.
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Analogously by Plancherel∥∥∥e−κ|ξ |4t θ̂0

∥∥∥
2
= ∥G(κt, ·)⋆θ0(·)∥2 ≤ ∥G∥2∥θ0∥1 ≲ (κt)

n
8 ∥θ∥1.
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