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Notation

Here we use the following convention

• N = {1, 2, 3, . . . }, N0 = {0, 1, 2, 3, . . . }

• Subsets/Supersets

– A ⊂ B denotes that A is a subset of B, i.e. all elements of A are also
in B.

– A ⊊ B denotes that A is a proper/strict subset of B, i.e. all elements
of A are also in B and there exist elements in B that are not in A.

– We won’t use ⊆.

1 Introduction

Lecture 1 (January 06)
We have to start somewhere, so the natural numbers are

N = {1, 2, 3, . . . },

which are suitable for measuring discrete quantities. (We use this convention
and write N0 = {0}∪N.) Obviously these are not enough. We can not measure
continuous quantities like lengths, weights, . . . . Ancient Greeks would use com-
parisons to measure these quantities. For two lengths L1 and L2 they believed
one can find a small enough unit u such that

L1 = mu, L2 = nu

with natural numbers m and n.

L1
L2

u
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So

L1

L2
=

m

n
,

leading to the positive rational numbers

Q+ =
{m

n

∣∣∣m,n ∈ N
}
.

Around 500 BC, it was discovered that this is not always possible and the
rational numbers are not enough. Measuring the diagonal of a square results in
square roots

√
2

1

1

In mathematics we state properties, which might be inspired by observations or
intuition, and then prove that these statements are in fact true.

Theorem 1√
2 ̸∈ Q+, i.e.

√
2 can not be written as a fraction of 2 natural numbers.

Accordingly we want to prove this theorem now. But how do we learn how to
prove things? Some proofs are unintuitive and we have to learn them from others
and memorize them and especially in the beginning it can be quite difficult to
understand them. But over time we develop a better understanding of how and
why these proofs work and it will become more easy.
This is why you should work together with friends and colleagues and come up
with solutions/proofs together. The sometimes portrait stereotype of a math-
ematician working alone in his room on a problem for a long time and then
coming up with a new result is the extreme exception. The vast majority of
research articles are written in groups, and many single author publications are
acknowledge discussions with other researchers.
But, in the tests, exams, . . . you will be on your own. So I encourage you to
work and study together but afterwards ask yourself if you would be able to
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solve the problem on your own (maybe even try a closely related problem) or if
you only think you understand what the others just told you.
And do not push this to the end it is much harder to catch up after some
time and potentially you will not understand the new material if you do not
understand old stuff.
Nevertheless, often times the statement of the theorem and our intuition, which
will build up after some time, can guide us towards a proof. A good idea is to
ask

• What do I know from the assumptions?

• What do I need to show?

Next we will go through an example proof.

Proof
We will prove Theorem 1 by contradiction. This is often the case for unintuitive
proofs. This means we assume that

√
2 ∈ Q+ and lead to a contradiction. What

do we know by this assumption? By this assumption
√
2 can be written as

√
2 =

m

n
, (1)

where m,n ∈ N. Additionally we can assume that their only common factor is
1, as otherwise we could cancel the common factor. Squaring (1) yields

2 =
(m
n

)2

=
m2

n2

and therefore

2n2 = m2 (2)

Since 2n2 = 2 · some natural number we know that 2n2 is even. By (2) m2 must
be even. Since m2 is even, m has to be even, too.1 As m is even, we can write
it as

m = 2k (3)

for some k ∈ N. Plugging (3) into (2) we get

2n2 = m2 = (2k)2 = 4k2

and after dividing by 2

n2 = 2k2.

Again, 2k2 is even and therefore n2 is even, which implies2 that n is even. We
can therefore write it as

n = 2l (4)

for some l ∈ N. By (3) and (4), both m and n share the common factor 2, which
contradicts the assumption that their only common factor is 1.

1This has to be proven!
2Again this has to be proven!
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The first proof of Theorem 1 probably did not look like this. Why would you
assume that the fraction was irreducible in the beginning? Mathematics devel-
ops and proofs in textbooks are usually polished and elegant. In this course we
will try to make these mistakes and fix them afterwards to show this process.
So that you will be able to come up with strategies and proofs and be able to
fix the first attempts.

Lecture 2 (January 08)

In the previous proof we skipped over the following theorem.

Theorem 2
Let n ∈ N. If n2 is even, then n is even.

Proof
We will show this by contraposition, i.e. we will show that if n ∈ N is odd, then
n2 is odd. Why do we do it this way? Going from n2 to n is like taking a square
root, which is much harder then squaring by going from n to n2. If n is odd,
we can write it as n = 2k + 1 for some k ∈ N0. We calculate

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 (5)

and see that 2(2k2 + 2k) + 1 = 2 · some natural number + 1, so it must be odd.
And by (5) n2 is odd.

Theorem 2 is acutally an equivalence.

Theorem 3
Let n ∈ N. n2 is even if and only if n is even.

Proof
We have to show

1. n2 is even implies n is even, which we have done in Theorem 2.

2. n is even implies n2 is even. (Do as an exercise) Since n is even, it can be
written as n = 2k for some k ∈ N. Squaring the equation we get

n2 = (2k)2 = 4k2 = 2(2k2).

Since 2(2k2) is even n2 has to be even.

4



2 Real numbers

2.1 The Algebraic Properties of R
Field Axioms of R
On R, there are tow operations, denoted by + and ·, called addition and mul-
tiplication, respectively. These operations satisfy

(A1) a+ b = b+ a for all a, b ∈ R (commutative property of addition)

(A2) (a+ b)+ c = a+(b+ c) for all a, b, c ∈ R (associative property of addition)

(A3) there exists an element 0 ∈ R such that 0 + a = a and a + 0 = a for all
a ∈ R (existence of a zero element)

(A4) for every a ∈ R there exists an element −a ∈ R such that a + (−a) = 0
and (−a) + a = 0 (existence of negative elements)

(M1) a · b = b · a for all a, b ∈ R (commutative property of multiplication)

(M2) (a ·b) ·c = a ·(b ·c) for all a, b, c ∈ R (associative property of multiplication)

(M3) there exists an element 1 ∈ R (distinct from 0) such that 1 · a = a and
a · 1 = a for all a ∈ R (existence of a unit element)

(M4) for all 0 ̸= a ∈ R there exists an element 1
a ∈ R such that a · 1

a = 1 and
1
a · a = 1 (existence of reciprocals)

(D) a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R
(distributive property of multiplication over addition)

Note that we did not introduce subtraction or division, yet. −a and 1
a are just

elements in R. We have only written them like this because in the end subtrac-
tion will be addition by the negative elements and division will be multiplication
with reciprocals.
With these Axioms all of the familiar algebraic properties can be derived. As
this is a calculus course, and not a algebra course, we won’t do it and only show
a couple of important results.

Theorem 4

1. If z, a ∈ R and z + a = a, then z = 0.

2. If u, b ∈ R, b ̸= 0 and u · b = b, then u = 1.

3. If a ∈ R, then a · 0 = 0

Proof
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1. By (A3), (A4), (A2), the assumption z + a = a, and (A4) one has

z = z + 0 = z + (a+ (−a)) = (z + a) + (−a) = a+ (−a) = 0.

2. Using (M3),(M4),(M1),(M2),(M1), the assumption u · b = b, and (M4) we
get

u = 1 · u =

(
b · 1

b

)
· u =

(
1

b
· b
)
· u =

1

b
· (b · u) = 1

b
· (u · b) = 1

b
· b = 1.

3. By (M3), (D), (A3), (M3)

a+ a · 0 = a · 1 + a · 0 = a · (1 + 0) = a · 1 = a.

Therefore by 1. we have a · 0 = 0.

Theorem 5

1. If a, b ∈ R, a ̸= 0 and a · b = 1, then b = 1
a

2. If a · b = 0, then either a = 0 or b = 0.

Proof

1. By (M1), (M4), (M2), the assumption a · b = 1, (M3)

b = 1 · b =
(
1

a
· a

)
· b = 1

a
· (a · b) = 1

a
· 1 =

1

a

2. It suffices to assume that a ̸= 0 and we show that b = 0 follows.⋆

Is it clear why?

• If a = 0 (or b = 0) we are already done since this is already the
conclusion.

• We would also need to show that for b ̸= 0 it follows that a = 0. But
by (M1) and the assumption

b · a = a · b = 0

So we would need to show if b ·a = 0, a, b ∈ R, b ̸= 0 then a = 0. But
this is exactly the same as ⋆ with a and b swapped. So it is covered
if we show ⋆.
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On one hand by (M2), (M4), (M3)

1

a
· (a · b) =

(
1

a
· a

)
· b = 1 · b = b. (6)

On the other hand by the assumption a · b = 0 and Theorem 4 Part 3

1

a
(a · b) = 1

a
· 0 = 0 (7)

Combining (7) and (6)

0 =
1

a
(a · b) = b.

Theorem 5 Part 1 shows that the reciprocal (or multiplicative inverse) for non-
zero elements is unique. Similar one can show that if a + b = 0, then b = −a,
proving the uniqueness of the negative (or additive inverse). With this we can
define the operations subtraction and division.

Definition 6
Let a, b ∈ R.

• subtraction is defined by

a− b := a+ (−b)

• If b ̸= 0 division is defined by

a

b
:= a · 1

b

The sign := means the left side is defined by the right side.
So subtraction of b is just addition of the (unique) negative element −b. Similar
division for b = 0.

Notation
In the following we will

• drop the · for multiplication, i.e. for a, b ∈ R

ab = a · b.

• use the standard notation for exponents, i.e. for a ∈ R and n ∈ N

an = an−1a

a1 = a

a0 = 1 for a ̸= 0

a−1 =
1

a
for a ̸= 0

a−n =

(
1

a

)n

for a ̸= 0

7



• freely use the standard techniques of algebra

Lecture 3 (January 09)

Sets of Numbers

• The natural numbers

N = {1, 2, 3, . . . }

• The integers

Z = N ∪ {0} ∪ −N,

where 0 is the zero element of R and −N consists of elements −n, which
are identified as the n-fold sum of −1.

• The rational numbers

Q =
{a

b

∣∣∣ a, b ∈ Z, b ̸= 0
}

• The irrational numbers are numbers in R that are not in Q.

• The real numbers can be thought of as all the standard numbers. Every
number in N,Z and Q is also in R, i.e. N,Z,Q ⊂ R. π, e,

√
2, . . . ∈ R.

Note that ∞ and −∞ are not real numbers.

Although this axiomatic approach to the real numbers might be a bit unsat-
isfactory, it has the advantage of skipping cumbersome constructions, such as
construction via completion or Dedekind cuts.

Order Properties of R As before we axiomatically describe the following.

The Order Properties of R
There exists a nonempty set P ⊂ R, called the positive real numbers, that
satsifies the following properties

1. If a, b ∈ P, then a+ b ∈ P

2. If a, b ∈ P, then ab ∈ P

3. If a ∈ R, then exactly one of the following holds

a ∈ P, a = 0, −a ∈ P

8
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Part 3 is called the Trichotomy Property, which divides R into 3 distinct sets.
It also allows us to define

• If a ∈ P we write a > 0 and say a is (strictly) positive

• If −a ∈ P we write a < 0 and say a is (strictly) negative

• If a ∈ P ∪ {0} we write a ≥ 0 and say a is nonnegative

• If −a ∈ P ∪ {0} we write a ≤ 0 and say a is nonpositive

With this we can define an ordering on R

Definition 7
Let a, b ∈ R.

1. If a− b ∈ P we write a > b or b < a

2. If a− b ∈ P ∪ {0} we write a ≥ b or b ≤ a

3. For c ∈ R we write a < b < c if a < b and b < c. Similarly >,≤,≥.

Theorem 8
Let a, b ∈ R. If a ≤ b and b ≤ a, then a = b.

Proof
By the Trichotomy Property, only one of the following holds. a−b ∈ P, −(a−b) ∈
P or a− b = 0.
Since a ≥ b, by definition we have a − b ∈ P ∪ {0}. Since also b ≥ a we have
−(a− b) = b−a ∈ P∪{0}, implying a− b ̸∈ P. As a− b ∈ P∪{0} and a− b ̸∈ P
we get a− b ∈ {0}, so a− b = 0.

Similar one finds that either a < b, b < a or a = b for any a, b ∈ R.

Theorem 9
Let a, b, c ∈ R.

1. If a > b and b > c, then a > c.

2. If a > b, then a+ c > b+ c.

3. (a) If a > b and c > 0, then ca > cb

(b) If a > b and c < 0, then ca < cb

Proof

1. Since a− b ∈ P and b− c ∈ P, Order Property 1 implies a− c = (a− b) +
(b− c) ∈ P

2. We have (a+ c)− (b+ c) = a− b ∈ P, implying a+ c > b+ c.

9



3. (a) By assumption c, a − b ∈ Pr. Therefore Order Property 2 implies
ca− cb = c(a− b) ∈ P and therefore ca > cb

(b) By assumption −c, a − b ∈ Pr. Therefore Order Property 2 implies
cb− ca = (−c)(a− b) ∈ P and therefore cb > ca.

Theorem 10

1. If 0 ̸= a ∈ R, then a2 > 0.

2. 1 > 0.

3. If n ∈ N, then n > 0.

Proof

1. By the Trichotomy Property, since a ̸= 0, either a ∈ P or −a ∈ P. If
a ∈ P, then by the Order Property 2 a2 = aa ∈ P. Similarly if −a ∈ P,
then by the Order Property 2 a2 = aa = (−a)(−a) ∈ P. Either way
a2 ∈ P, implying a2 > 0.

2. Since 1 = 12 Part 1 implies 1 > 0

3. We use mathematical induction.

• Base Case: For n = 1, n = 1 > 0 was proven in Part 2

• Induction Assumption: Suppose n > 0 holds for some n ∈ N.
• Induction Conclusion: For n + 1 we have n ∈ P by the induction
assumption and 1 ∈ P by Part 2. Therefore the Order Property 1
implies n+ 1 ∈ P, i.e. n+ 1 > 0.

Lecture 4 (January 13)

Theorem 11
If a ∈ R fulfills 0 ≤ a < ε for every ε > 0, then a = 0.

This theorem says that there exists no smallest positive number.

Proof
We want to show that can not be true since we could always find a smaller
number by dividing that number by 2. So we first have to show that 1

2 > 0
By definition 1

22 = 1 and by Theorem 10.3 1, 2 > 0. By the Trichotomy Property
1
2 is either positive, negative or 0. Since it is not 0, it can only be positive or
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negative. If 1
2 would be negative then −1 =

(
− 1

2

)
2 ∈ P by Order Property 2,

which contradicts that 1 > 0. So 1
2 is positive.

With this we can prove the actual statement by contradiction.
Suppose there exists a ∈ R with 0 < a < ε for every ε > 0. Then setting
ε0 = 1

2a, we find

ε0 =
1

2
a > 0 (8)

since 1
2 > 0 and a > 0. Using (8) twice we find

0 < ε0 < ε0 + ε0 = 2ε0 = 2
1

2
a = a,

which contradicts the assumption.

We have seen that the product of two positive numbers is positive. The reverse
is not necessarily true.

Theorem 12
Let a, b ∈ R. If ab > 0, then either

• a > 0 and b > 0 or

• a < 0 and b < 0

Proof
By Theorem 4.3 and Axiom (M1) a, b ̸= 0. So either a > 0 or a < 0. If
a > 0, then 1

a > 0 (analogously to the proof of Theorem 11) and therefore
b = 1

a (ab) > 0. The proof for a < 0 works in exactly the same way.

Corollary 13
Let a, b ∈ R. If ab < 0, then either

• a < 0 and b > 0 or

• a > 0 and b < 0

Proof
Since ab < 0 we have (−a)b = −ab > 0. Theorem 12 now shows either −a, b > 0
or −a, b < 0, so a < 0 and b > 0 or a > 0 and b < 0.

Inequalities Here we want to see how to apply these rules to solve inequalities.

Example 14

• Determine the set A of all real numbers x such that 2x+ 3 ≤ 6.

– By Theorem 9

A = {x ∈ R | 2x+ 3 ≤ 6} = {x ∈ R | 2x ≤ 3} =

{
x ∈ R

∣∣∣∣x ≤ 3

2

}
11



• Determine the set B =
{
x ∈ R

∣∣x2 + x > 2
}
.

– x ∈ B is equivalent to x ∈ R and

x2 + x > 2 ⇔ x2 + x− 2 > 0 ⇔ (x− 1)(x+ 2) > 0,

which by Theorem 12 is equivalent to either x − 1, x + 2 > 0 or
x− 1, x+ 2 < 0.

The first case corresponds to x > 1 and x > −2. Since if x > 1
trivially x > −2 the first case is equivalent to x > 1.

Similar for the second case

x− 1 < 0, x+ 2 < 0 ⇔ x < 1, x < −2 ⇔ x < −2

Combining the cases either x > 1 or x < −2, so

B = {x ∈ R |x < −2} ∪ {x ∈ R |x > 1}

• Determine the set C =
{
x ∈ R

∣∣∣ 2x+1
x+2 < 1

}
– x ∈ C is equivalent to x ∈ R and

2x+ 1

x+ 2
< 1 ⇔ 2x+ 1

x+ 2
− 1 < 0 ⇔ x− 1

x+ 2
< 0

and therefore by Corollary 13 (and similar to Quiz 1.2 a > 0 ⇔ 1
a >

0) either x− 1 < 0 and x+2 > 0, which corresponds to −2 < x < 1,
or x− 1 > 0 and x+2 < 0, which corresponds to x > 1 and x < −2,
which is impossible. Therefore C = {x ∈ R | −2 < x < 1} .

Theorem 15
For 0 ≤ a, b ∈ R

a < b ⇔ a2 < b2

Proof
Without loss of generality assume that either a or b is non-zero. (Otherwise the
statement is 0 < 0 ⇔ 02 < 02, which both can not be satisfied)
If b > a then a2 = aa ≤ ab ≤ bb = b2 by Theorem 9.
Conversely if b2 > a2 one has

0 < b2 − a2 = (b+ a)(b− a)

and dividing by b + a > 0 (By Quiz 1.2 a + b > 0 implies 1
a+b > 0. Therefore

Theorem 9 shows that this leaves the inequality unchanged) shows 0 < b−a.

12



2.2 Absolute Value and the Real Line

Definition 16 (Absolute Value)
The absolute value (function) is defined by

|a| =


a if a > 0

0 if a = 0

−a if a < 0

The trichotomy property ensures that it is well defined for all real numbers.
Note that it always returns the non-negative part of a.

Example 17

• |3| = 3

• | − 9| = 9

• |0| = 0

• | − a| = |a|

Theorem 18
Let a, b ∈ R.

1. |ab| = |a| |b|

2. |a2| = |a|2

3. Assume b ≥ 0. Then |a| ≤ b if and only if −b ≤ a ≤ b.

4. −|a| ≤ a ≤ |a|.

Lecture 5 (January 15)

Proof

1. Assume a, b ̸= 0. (For a = 0 trivially |ab| = |0| = 0 = 0|b| = |a||b| and
b = 0 similar)

• If a, b > 0 one has |ab| = ab = |a| |b|
• If a > 0, b < 0 one has |ab| = −ab = a(−b) = |a| |b|
• a < 0, b > 0 similar to a > 0, b < 0

• If a, b < 0 one has |ab| = ab = (−a)(−b) = |a| |b|

2. This follows directly from Part 1 by choosing b = a.

13



3. • Assume a ≥ 0. If |a| ≤ b one has −b ≤ 0 ≤ a = |a| ≤ b and for
−b ≤ a ≤ b one has |a| = a ≤ b.

• Assume a ≤ 0. If |a| ≤ b one has −b ≤ 0 ≤ −a and −a = |a| ≤ b,
implying a < b and −b ≤ a. Conversely since a = −(−a) = −|a| if
−b ≤ a ≤ b one has −b ≤ a = −|a|, which implies |a| ≤ b.

4. This follows directly from Part 3 by choosing b = |a|.

Theorem 19 (Triangle Inequality)
If a, b ∈ R, then |a+ b| ≤ |a|+ |b|.

Proof
By Part 4 of Theorem 18

−|a| ≤ a ≤ |a| and − |b| ≤ b ≤ |b|

Adding both left sides and right sides

−(|a|+ |b|) ≤ (a+ b) ≤ |a|+ |b|,

which by Part 3 of Theorem 18 yields |a+ b| ≤ |a|+ |b|.

Corollary 20
If a, b ∈ R, then

1.
∣∣|a| − |b|

∣∣ ≤ |a− b| (called reverse triangle inequality)

2. |a− b| ≤ |a|+ |b|

Proof

1. The triangle inequality yields

|a| = |a− b+ b| ≤ |a− b|+ |b| =⇒ |a| − |b| ≤ |a− b|
|b| = |b− a+ a| ≤ |b− a|+ |a| =⇒ −|a− b| ≤ |a| − |b|

or equivalently −|a− b| ≤ |a| − |b| ≤ |a− b|, which by Part 3 of Theorem
18 yields

∣∣|a| − |b|
∣∣ ≤ |a− b|.

2. By the triangle inequality

|a− b| = |a+ (−b)| ≤ |a|+ | − b| = |a|+ |b|.

Example 21

14



• Determine the set A = {x ∈ R | |2x+ 3| ≤ 7}.
By Part 3 of Theorem 18

|2x+ 3| ≤ 7 ⇔ −7 ≤ 2x+ 3 ≤ 7 ⇔ −10 ≤ 2x ≤ 4

⇔ −5 ≤ x ≤ 2

so A = {x ∈ R | −5 ≤ x ≤ 2}

• Determine B = {x ∈ R | |x− 1| ≤ |x|}.

– Method 1: Consider the cases where the absolute value changes be-
havior, i.e. at x = 1, x = 0. We distinguish 3 cases

1. x < 0:

|x− 1| ≤ |x| ⇔ −(x− 1) ≤ −x ⇔ 1 ≤ 0 ⇔ E

So no x < 0 fulfills the condition

2. 0 ≤ x ≤ 1:

|x− 1| ≤ |x| ⇔ −(x− 1) ≤ x ⇔ 1 ≤ 2x ⇔ 1

2
≤ x

which yields 1
2 ≤ x = 1

3. 1 ≤ x

|x− 1| ≤ |x| ⇔ x− 1 ≤ x ⇔ 0 ≤ 1 ⇔ ✓

So all x ≥ 1 fulfill the condition.

Combined this shows that B =
{
x ∈ R

∣∣x ≥ 1
2

}
– Method 2: Similar to Theorem 15 for a, b ≥ 0

a ≤ b ⇔ a2 ≤ b2.

Therefore

|x− 1| ≤ |x| ⇔ x2 − 2x+ 1 = (x− 1)2 = |x− 1|2 ≤ |x|2 = x2

⇔ −2x+ 1 ≤ 0 ⇔ x ≥ 1

2
.

We could also draw a sketch to get an intuition and then try to prove that
this guess is actually correct.

15



-4 -3 -2 -1 0 1 2 3 4

| − 3| = 3

|(−1)− (4)| = 5

The Real Line The real line is a nice way of visualizing the real numbers.
The absolute value function | · | corresponds to a distance function. |a| is the
distance of a to the origin and more generally the distance between a and b is
|a − b|. More generally speaking (not important for this course) the absolute
value function describes a metric on the real numbers, which together forms a
metric space.
Later we will often investigate how close numbers are to each other, which we
will do by using this distance function.

Definition 22 (ε-neighborhood)
Let a ∈ R and ε > 0. Then the ε-neighborhood of a is the set Vε(a) :=
{x ∈ R | |x− a| < ε}
This means that the ε-neighborhood of a consists of all the points that are closer
to a then ε

x ∈ Vε(a) ⇔ |x− a| < ε ⇔ a− ε < x < a+ ε

a− ϵ a a+ ϵ

Theorem 23
Let a ∈ R. If x belongs the neighborhood Vε(a) for every ε > 0, then x = a.

Proof
It holds 0 ≤ |x−a| < ε for every ε > 0. Therefore by Theorem 11 x−a = 0.

Example 24
If x ∈ Vε(a) and y ∈ Vε(b). Then by the triangle inequality

|(x+ y)− (a+ b)| = |(x− a) + (y − b)| ≤ |x− a|+ |y − b| ≤ 2ε

Therefore x+ y ∈ V2ε(a+ b), i.e. x+ y is in the 2ε-neighborhood of a+ b.

Lecture 6 (January 16)
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2.3 Completeness of R
In the introduction we have seen that

√
2 ̸∈ Q,

which implies that Q is not complete. In fact
√
2 ∈ R \Q and as we will see R

is complete, which one can think of that there are no holes in R.
(R is a complete (no holes) ordered (via smaller and bigger) field (one can
calculate according to the field axioms), which makes it behave nicely.)

Definition 25
Let ∅ ̸= S ⊂ R.

1. S is bounded above if there exists a number u ∈ R such that s ≤ u for all
s ∈ S. Each such u is called an upper bound for S.

2. S is bounded below if there exists a number l ∈ R such that l ≤ s for all
s ∈ S. Each such l is called an lower bound for S.

3. A set is called bounded if it is bounded above and bounded below.

4. A set is called unbounded if it is not bounded.

Example 26
S = {x ∈ R |x < 2} is bounded above. 2 is an upper bound for S. 100 is an
upper bound for S. It is not bounded below. So it is unbounded.

Every bounded set in R has infinitely many upper and lower bounds. The
example shows that there is special one, the supremum.

Definition 27 (Supremum/Infimum)
Let ∅ ̸= S ⊂ R.

1. If S is bounded above, then a number u ∈ R is called supremum or
least upper bound of S if it satisfies

(a) u is an upper bound for S

(b) If v is any upper bound for S, then u ≤ v

2. If S is bounded below, then a number l ∈ R is called infimum or greatest lower bound
of S if it satisfies

(a) l is an lower bound for S

(b) If t is any lower bound for S, then t ≤ l

Supremum of Infimum are unique, if they exist. We will write u = supS if u is
a supremum of S.
Note that ∅ ̸= S ⊂ R can have

• a supremum and infimum (e.g. S = {x ∈ R | 0 ≤ x ≤ 1})

17



• a supremum and but no infimum (e.g. S = {x ∈ R |x < 0})
• an infimum but no supremum (e.g. S = {x ∈ R |x > 1})
• neither a supremum nor an infimum (e.g. S = R or S = Z)

Lemma 28
Let ∅ ̸= S ⊂ R and u be an upper bound for S. u is the supremum of S if and
only if for every ε > 0 there exists an sε ∈ S such that u− ε < sε.

Proof
” =⇒ ”: Let u = supS and ε > 0. Any v = u − ε < u can not be an upper
bound of S. Since otherwise v would be the supremum instead of u. Therefore
there exists sε ∈ S with sε > v = u− ε.
” ⇐= ” Assume for every ε > 0 there is an sε ∈ S such that u−ε < sε. Since u is
an upper bound we only have to show that there is no smaller upper bound. We
will do this by contradiction: Assume there exists v < u with v ≥ s for all s ∈ S.
Then setting ε = u−v

2 we find v = v+v
2 ≤ u+v

2 = u − u−v
2 = u − ε < sε ∈ S, a

contradiction to v ≥ s for all s ∈ S. draw picture!

Note that the supremum does not have to belong to the set. Both S1 =
{x ∈ R |x < 1} and S2 = {x ∈ R |x ≤ 1} have the same supremum, sup(S1) =
1 = sup(S2).

Completeness Property of R
Every nonempty set of real numbers that has an upper bound also has a supre-
mum in R.

Remarks 29

• The important part is that the supremum is in R.

• Unfortunately, we can not prove this property from the field axioms and
Order properties of R.

Definition 30 (Maximum/Minimum)
Let ∅ ̸= S ⊂ R.

• m ∈ S such that m ≥ s for all s ∈ S is called maximum of S and we write
m = max(S)

• m ∈ S such that m ≤ s for all s ∈ S is called minimum of S and we write
m = min(S)

Difference between max and sup
Even though we did not introduce the maximum we have an intuition for it.
One could define it for ∅ ̸= S ⊂ R as its biggest element. The difference
between max and sup is that the maximum has to be an element of S, while
the supremum does not have to be an element of S.

• S = {x ∈ R | 0 ≤ x ≤ 1} maxS = 1 supS = 1

• S = {x ∈ R | 0 ≤ x < 1} maxS does not exists supS = 1

• S =
{
− 1

n

∣∣n ∈ N
}

maxS does not exists supS = 0

18



2.4 Applications of the Supremum Property

Lemma 32
Let∅ ̸= S ⊂ R be bounded above and a ∈ R. Also define a+S = {a+ s | s ∈ S}.
Then

sup(a+ S) = a+ sup(S).

Proof
Let u = supS. Then s ≤ u for all s ∈ S and therefore a + s ≤ a + u for all
s ∈ S. This shows that a + u is an upper bound of a + S, which implies that
sup(a+ S) ≤ a+ u.
Let v be any upper bound of a+S. Then a+s ≤ v for all s ∈ S, implying s ≤ v−a
for all s ∈ S. So v − a is an upper bound of S. Therefore u = supS ≤ v − a,
implying a + u ≤ v. But v was any upper bound so this holds for all upper
bounds of a+ S and in particular sup(a+ S). So a+ u ≤ sup(a+ S).
Combining both estimates

a+ u ≤ sup(a+ S) ≤ a+ u,

implying sup(a+ S) = a+ u = a+ sup(S).

In the second quiz you will handle multiplication.

Lecture 7 (January 20)

Lemma 33
Suppose ∅ ̸= A,B ⊂ R satisfy

a ≤ b for all a ∈ A and b ∈ B.

Then

supA ≤ inf B.

We do not need that A is bounded from above and B from below, since this
is automatically implied by the assumptions that both are nonempty and the
inequality.

Proof
For any b̃ ∈ B we have that a ≤ b̃ for all a ∈ A. Here I use b̃ to emphasize that
we fix a specific, but arbitrary b. We could have omitted the .̃ Therefore b̃ is
an upper bound of A, i.e. supA ≤ b̃.
So supA ≤ b̃ for any b̃ ∈ B. This means that supA is a lower bound for B. As
the infimum is the greatest lower bound in particular

supA ≤ inf B.

19



Functions

Definition 34
Given f : D → R, we say f is bounded (above/below) if the image of f =
f(D) = {f(x) |x ∈ D} is bounded (above/below).

Lemma 35
Suppose f, g : D → R are bounded.

1. If f(x) ≤ g(x) for all x ∈ D, then sup f(D) ≤ sup g(D), which is some-
times written as

sup
x∈D

f(x) ≤ sup
x∈D

g(x)

2. f(x) ≤ g(x) for all x ∈ D does not necessarily imply sup f ≤ inf g.

3. f(x) ≤ g(y) for all x, y ∈ D does imply sup f ≤ inf g.

Proof

1. Since f(x) ≤ g(x) ≤ sup g for all x ∈ D sup g is an upper bound for f(D),
and since the supremum is the smallest such upper bound sup f ≤ sup g.

2. Let D = {x ∈ R | 0 ≤ x ≤ 2} and f(x) = x, g(x) = x + 1. Then sup f =
2 > 1 = inf g.

3. Lemma 33 with A = f(D) and B = g(D) yields the claim.

Archimedean Property
As it turns out the Field Axioms and Order Properties of Rare not sufficient to
prove that N is unbounded in R. We need the completeness of R.

Theorem 36 (Archimedean Property)
For any x ∈ R there exists an n ∈ N such that n ≥ x.

Proof
By contradiction, i.e. assume there exists x ∈ R such that x > n for all n ∈ N.
Then x is an upper bound for N. By the completeness property there exists
u = supN ∈ R and u− 1 < supN. Thus u− 1 is not an upper bound, implying
that there exists m ∈ N such that u− 1 < m. Adding 1 yields u < m+ 1 ∈ N,
which is a contradiction that u is the supremum of N .

Corollary 37
If S =

{
1
n

∣∣n ∈ N
}
, then inf S = 0.
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Proof
Since S ̸= ∅ and S is bounded below by 0, it has an infimum w, which satisfies
w ≥ 0. For any ε > 0 the Archimedean Property implies that there exists an
n ∈ N such that 1

ε < n, which implies 1
n < ε. Therefore

0 ≤ w ≤ 1

n
< ε

for any ε > 0, which by Theorem 11 implies w = 0.

Corollary 38
For every t > 0, there exists n ∈ N such that 0 < 1

n < t.

Proof
Since inf

{
1
n

∣∣n ∈ N
}
= 0 and t > 0, t can not be a lower bound for

{
1
n

∣∣n ∈ N
}
.

Thus there exists ñ ∈ N such that 0 < 1
ñ < t.

Lecture 8 (January 22)

Roots
In the introduction have already seen that 2 ̸∈ Q, but we never showed that

√
2

actually exists, which we will do now.

Theorem 39
There exists a unique 0 < x ∈ R such that x2 = 2.

Proof
We want to use some existence result. And the only suitable one that we have
is the Completeness Property of R, which says that every nonempty set of real
numbers that has an upper bound has a supremum in R. So the proof is to
construct a set that fulfills the assumptions. Let S =

{
s ∈ R

∣∣ 0 ≤ s, s2 < 2
}
.

Since 1 ∈ S, the set is not empty. It is also bounded above by 2 since if t > 2,
then t2 > 2t > 4, showing that t ̸∈ S. So we can apply the Completeness
Property and get that S has a supremum in R, which we call x(= supS).
We have to show that x2 = 2, which we will do by proving x2 ̸< 2 and x2 ̸> 2
via contradiction. Showing that something does not fulfill a certain condition
usually hints at a proof by contradiction.
The second condition of S, i.e. s2 < 2 indicates that the supremum satisfies
x2 = 2, so the idea is that if it is smaller than this we could squeeze another
s = x + 1

n ∈ S in between. Similar if the supremum was bigger then we could
find a lower upper bound x− 1

m . Now we only have to write this mathematically.
Assume x2 < 2. Then for any n ∈ N(

x+
1

n

)2

= x2 +
2x

n
+

1

n2
≤ x2 +

2x

n
+

1

n
= x2 +

2x+ 1

n
. (9)
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We want right hand side to be < 2, since then x+ 1
n ∈ S. So we calculate

x2 +
2x+ 1

n

!
< 2 ⇔ 2x+ 1

2− x2
< n

The Archimedean Property says there exists ñ > 2x+1
2−x2 . Therefore(

x+
1

ñ

)2 (9)

≤ x2 +
2x+ 1

ñ
< x2 + 2− x2 = 2,

showing that x < x+ 1
ñ ∈ S, so x is not an upper bound for S, so x ̸= supS, a

contradiction.
Assume x2 > 2. Then for any m ∈ N(

x− 1

m

)2

= x2 − 2x

m
+

1

m2
> x2 − 2x

m
. (10)

Again we want the right hand side to be > 2 since then x − 1
m is a better

supremum.

x2 − 2x

m

!
> 2 ⇔ x2 − 2 >

2x

m
⇔ m >

2x

x2 − 2
.

The Archimedean Property says there exists m̃ > 2x
x2−2 . Therefore(

x− 1

m̃

)2 (10)

≥ x2 − 2x

m̃
> 2 > s2 (11)

for any s ∈ S. By Theorem 15 (For 0 ≤ a, b ∈ R one has a < b ⇔ a2 < b2), (11)
shows that x − 1

m̃ > s for every s ∈ S, i.e. x − 1
m̃ is an upper bound for S, a

contradiction to x being the supremum (lowest upper bound).
Uniqueness: Uniqueness is usually shown in this way: Suppose there are 2 that
work, then they have to coincide. Suppose 0 < x, y ∈ R satisfy x2 = 2, y2 = 2.
Then (x+ y)(x− y) = x2 − y2 = 2− 2 = 0. Dividing by x+ y shows x− y = 0,
i.e. x = y.

Theorem 39 shows that x is well defined. Therefore
√
2 := x. Similarly one can

show that the square root of any positive number r is uniquely determined in
R, i.e. x =

√
r is defined as the unique solution to 0 < x ∈ R satisfying x2 = r.

Density of Q in R

Theorem 40 (Q is dense in R.)
Let x, y ∈ R satisfy x < y. Then there exists r ∈ Q such that x < r < y.

Proof
The idea is that if we multiply x, y by a big natural number such that there is
a natural number in between. Then dividing by that number yields the result.
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0 xm
n
y nx m ny

> 1

Without loss of generality assume x, y > 0. (Otherwise first prove for positive
and then x < r < y ⇔ x+a < r+a < y+a for large a ∈ Q such that x+a > 0.)
Calculating

ny − nx > 1 ⇔ y − x >
1

n

By the Archimedean Property there exists n ∈ N such that

0 <
1

n
< y − x

and therefore

1 < ny − nx. (12)

Now we want to find m in between ny and nx Let k ∈ N be the smallest natural
number such that

ny ≤ k, (13)

which exists due to the Archimedean Property. This also implies

k − 1 < ny, (14)

since otherwise k̃ = k− 1 would be the smallest number in N such that ny ≤ k̃.
Here it is helpful that ny > 0 by the without loss of generality statement since
otherwise there is a gap between ny ≤ 0 < k Combining everything

nx
(12)
< ny − 1

(13)

≤ k − 1
(14)
< ny.

Therefore m = k − 1 ∈ N0 satisfies

nx < m < ny

and dividing by n and defining r = m
n we find

x < r < y,

where r = m
n ∈ Q.

Lecture 9 (January 23)
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Corollary 41
If x, y ∈ R and x < y, then there exists an irrational number z such that
x < z < y.

Proof
We know that there is a rational number r in between them so if we can smuggle
in a factor of

√
2, we find a irrational number. So we want to find

x <
√
2r < y ⇔ x√

2
< r <

y√
2
,

where r is rational. Similar to before without loss of generality x, y > 0. By
Theorem 40 there exists 0 < r ∈ Q such that

x√
2
< r <

y√
2
.

Multiplying by
√
2 we find

x <
√
2r < y.

We found a candidate z =
√
2r. It is left to show that

√
2r ̸∈ Q. By contra-

diction if
√
2r ∈ Q then

√
2r = m

n for some m,n ∈ Z. But since r is rational

0 ̸= r = k
l , implying

√
2 =

m

n

1

r
=

ml

nk
∈ Q,

a contradiction to Theorem 1 (
√
2 ̸∈ Q).

Theorem 40 and Corollary 41 show that we can find rational and irrational num-
bers in between every 2 (different) numbers. Applying the Theorem/Corollary
repeatedly there exist infinite numbers of both kinds between every different
numbers. As we will see later there are ”more” irrational (uncountable many)
than rational (countable many) numbers.

2.5 Intervals

Definition 42
Let a, b ∈ R with a < b. Then

• (a, b) := {x ∈ R | a < x < b} is called an open interval

• [a, b] := {x ∈ R | a ≤ x ≤ b} is called an closed interval

• [a, b) := {x ∈ R | a ≤ x < b} and (a, b] := {x ∈ R | a < x ≤ b} are called
half-open or half-closed intervals
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• (a,∞) := {x ∈ R |x > a}
[a,∞) := {x ∈ R |x ≥ a}

(−∞, b) := {x ∈ R |x < b}
(−∞, b] := {x ∈ R |x ≤ b}

(−∞,∞) := R

Remarks 43

• (a, a) = [a, a) = (a, a] = ∅ and [a, a] = {a} are not intervals.

• ∞ is not a number, (a,∞) is just notation for {x ∈ R |x > a}. In general
∞ breaks things, be careful when and how to use it!

When is a set an interval?

Theorem 44
Assume S ⊂ R has at least 2 points and

for all x, y ∈ S, x < y =⇒ [x, y] ⊂ S (15)

holds. Then S is an interval.

This means if any point in between two points of the set is in the set then the
set is an interval.

Proof
We need to show that either of the interval definitions applies, i.e. either S =
[a, b], S = (a, b), . . . . We will show that (a, b) ⊂ S ⊂ (a, b) or the (half-) closed
versions of this. We look at different cases

• Assume S is bounded. Then there exists a = inf S and b = supS and
S ⊂ [a, b]. Next we will show that (a, b) ⊂ S, i.e. every z with a < z < b
fulfills z ∈ S. z can not be a lower bound (since otherwise inf S = z), nor
can it be an upper bound (since otherwise supS = z). Therefore there
exists x, y ∈ S with x < z < y, i.e. z ∈ (x, y) for some x, y ∈ S. By (15)
we get z ∈ (x, y) ⊂ [x, y] ⊂ S. Showing that z ∈ S, which was arbitrary,
so it holds for every z ∈ (a, b), i.e. (a, b) ⊂ S.

– If a, b ∈ S then S ⊂ [a, b] = {a, b} ∪ (a, b) ⊂ S

– If a ∈ S, b ̸∈ S then S ⊂ [a, b] \ {b} = {a} ∪ (a, b) ⊂ S

– If b ∈ S, a ̸∈ S then S ⊂ [a, b] \ {a} = {b} ∪ (a, b) ⊂ S

– If a, b ̸∈ S then S ⊂ [a, b] \ {a, b} = (a, b) ⊂ S

• Assume S is above but not below. Let b = supS. Then S ⊂ (−∞, b]
and we will show that (−∞, b) ⊂ S, i.e. every z ∈ R with z < b fulfills
z ∈ S. z can not be a lower bound since S is not bounded below and z
is not an upper bound (since otherwise supS = z). Therefore there exists
x, y ∈ S with x < z < y, i.e. z ∈ (x, y) for some x, y ∈ S. By (15) we get
z ∈ (x, y) ⊂ [x, y] ⊂ S. Showing that z ∈ S, which was arbitrary, so it
holds for every z ∈ (−∞, b), i.e. (−∞, b) ⊂ Z.
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– If b ∈ S then S ⊂ (−∞, b) ⊂ (−∞, b) ∪ {b} ⊂ S

– If b ̸∈ S then S ⊂ (−∞, b] \ {b} = (−∞, b) ⊂ S

• say similar to before Assume S is below but not above. Let a = inf S.
Then S ⊂ [a,∞) and we will show that (a,∞) ⊂ S, i.e. every z ∈ R with
a < z fulfills z ∈ S. z can not be an upper bound since S is not bounded
above and z is not a lower bound (since otherwise inf S = z). Therefore
there exists x, y ∈ S with x < z < y, i.e. z ∈ (x, y) for some x, y ∈ S.
By (15) we get z ∈ (x, y) ⊂ [x, y] ⊂ S. Showing that z ∈ S, which was
arbitrary, so it holds for every z ∈ (−∞, b), i.e. (−∞, b) ⊂ Z.

– If a ∈ S then S ⊂ (a,∞) ⊂ (a,∞) ∪ {a} ⊂ S

– If a ̸∈ S then S ⊂ (−∞, a] \ {a} = (a,∞) ⊂ S

• say similar to before Assume S is neither bounded below nor bounded
above. We will show that (−∞,∞) ⊂ S, i.e. every z ∈ R fulfills z ∈ S.
z can neither be an upper nor a lower bound since S is neither bounded
above nor below. Therefore there exists x, y ∈ S with x < z < y, i.e. z ∈
(x, y) for some x, y ∈ S. By (15) we get z ∈ (x, y) ⊂ [x, y] ⊂ S. Showing
that z ∈ S, which was arbitrary, so it holds for every z ∈ (−∞,∞), i.e.
(−∞,∞) ⊂ Z ⊂ R = (−∞,∞).

Lecture 10 (January 27)

Nested Intervals

Definition 45 (Nested Intervals)
We say that a sequence of intervals In, n ∈ N is nested if for every n ∈ N one
has In+1 ⊂ In, i.e. the following chain of inclusions holds

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 ⊃ . . . .

I1

I2

I3

I4

Figure 1: Nested Intervals
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Example 46
We define x ∈ ⋂∞

n=1 In ⇔ x ∈ In for all n ∈ N. There is no number ∞ here. It
is just notation.

• For In =
[
0, 1

n

]
one has In+1 ⊂ In for all n ∈ N, so these are nested

intervals. And
⋂∞

n=1 In = {0}. (Proof in assignment)

• In =
(
0, 1

n

)
again are nested intervals but

⋂∞
n=1 In = ∅. (Proof in assign-

ment)

Theorem 47 (Nested Intervals Property)
If In = [an, bn], n ∈ N is a nested sequence of closed bounded intervals, then
there exists a number x ∈ R such that x ∈ In for all n ∈ N, i.e. x ∈ ⋂∞

n=1 In.

Proof
We will show that sup {ak ∈ R | k ∈ N} does the job. On one side it is ≥ than
the left end points, on the other side it is ≤ then the right end points. For
any k ∈ N we have ak < bk ≤ b1. Thus b1 is an upper bound for the
set {ak ∈ R | k ∈ N}, which is non-empty. By the Completeness Property of
R there exists a supremum of this set, which we call x. This implies that
an ≤ sup {ak ∈ R | k ∈ N} = x.
Next we’ll show that x ≤ bn for all n ∈ N. We will first show that for every
n ∈ N, bn is an upper bound for the set {ak ∈ R | k ∈ N}.

• If n ≤ k, then since In ⊃ Ik we have ak ≤ bk ≤ bn.

• If k < n, then since In ⊂ Ik we have ak ≤ an ≤ bn.

Thus ak ≤ bn for all k ∈ N, i.e. bn is an upper bound for {ak ∈ R | k ∈ N}.
Therefore an ≤ x = sup {ak ∈ R | k ∈ N} ≤ bn, implying x ∈ In.

One can show that if the width of the intervals shrinks, i.e. inf {bn − an |n ∈ N} =
0, then there is only one such x, i.e. it is unique.

3 Sequences and Series

3.1 Sequences and Their Limits

Definition 48 (Sequence)
A sequence of real numbers is a function X : N → R. We will write

xn = X(n)

for individual values and denote the whole sequence by

X, (xn), (xn)n∈N or (xn | n ∈ N).

Remark 49 (Recursively defined sequences)
A sequence can also be defined recursively (or inductively) by specifying x1, . . . , xk

for k ∈ N and xn+1 = f(xn, xn−1, . . . , xn−k) where f : Rk → R.

27



Example 50

• (a)n∈N = (a, a, a, . . . ) for a ∈ R

• (2)n∈N = (2, 2, 2, . . . )

• (n2)n∈N = (12, 22, 32, . . . ) = (1, 4, 9, . . . )

• (nk)k∈N = (n1, n2, n3, . . . ) for n ∈ R

• (2n)n∈N = (2, 4, 6, . . . ), which is the same as the recursively defined

x1 = 2, xn+1 = xn + 2

• The Fibonacci sequence

f1 = f2 = 1, fn+1 = fn + fn−1

Limits

Definition 51 (Convergence/Limit)
A sequence (xn) of real numbers converges to x ∈ R, equivalently x is the limit
of the sequence (xn) if for every ε > 0 there exists a N ∈ N such that for all
n ≥ N one has

|xn − x| < ε.

If the sequence converges we write

lim
n→∞

(xn) = x, xn
n→∞−−−−→ x or xn → x, as n → ∞.

If the sequence does not converge, i.e. there exists no such limit x, it is said to
diverge.

Lecture 11 (January 29)

n

xn

x
x+ ϵ

x− ϵ

N

Remarks 52
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• N may depend on ε.

• The condition |xn − x| < ε could be changed to |xn − x| ≤ ε.

|xn − x| < ε =⇒ |xn − x| ≤ ε

|xn − x| ≤ ε < 2ε =: ε̃ ∀ε̃ > 0 ⇐= |xn − x| ≤ ε ∀ε > 0

• Usually ε being small is the difficult case, in which most likely we require
N to be big.

• Again n → ∞ is just notation for the definition, which does not involve
any ∞. We do not plug in n = ∞.

The Collatz-Conjecture is a easy to understand open problem for a sequence.

Theorem 53 (Uniqueness of Limits)
A sequence in R can have at most one limit.

Proof
Suppose x, x̃ are both limits of (xn). For each ε > 0 there exists N, Ñ ∈ N such
that

|xn − x| < ε, |xñ − x̃| < ε

for n ≥ N , ñ ≥ Ñ . Therefore for n ≥ max{N, Ñ} by the triangle inequality

|x− x̃| = |x− xn + xn − x̃| ≤ |x− xn|+ |xn − x̃| < 2ε.

Defining ε̃ = ε
2 we find for any ε̃ > 0 that

0 ≤ |x− x̃| < ε̃,

which by Theorem 11 implies that |x− x̃| = 0. Thus x = x̃.

Lemma 54
Let (xn) be a sequence in R and x ∈ R. Then the following are equivalent

1. (xn) converges to x

2. For every ε > 0, there exists N ∈ N such that for all n ≥ N

|xn − x| < ε

holds.

3. For every ε > 0, there exists N ∈ N such that for all n ≥ N

x− ε < xn < x+ ε

holds.
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4. For every ε-neighborhood Vε(x) of x there exists N ∈ N such that for all
n ≥ N

xn ∈ Vε(x)

holds.

Proof
1 is equivalent to 2 by the Definition of the limit. The equivalence of 2 and
3 follows analogous to Theorem 18.3 (which handled ≤ instead of <). 3 is
equivalent to 4 by Definition 22 (ε-neighborhoods).

Remarks 55

• These statements could also be written in reverse: For every ε > 0 only
a finite number of elements xn are not in Vε(x). These finite number of
elements that are (potentially) not in Vε(x) are x1, . . . , xN−1.

• The definition of a limit is not constructive. In practice we try to guess
the limit and then prove that it is the limit.

Example 56

1. limn→∞
(
1
n

)
= 0

Proof
We want ∣∣∣∣ 1n − 0

∣∣∣∣ < ε ⇔ 1

ε
< n

and if we increase n the left side shrinks more. Given ε > 0 the
Archimedean Property asserts that there exists N ∈ N such that 1

ε < N .
Therefore for any n ≥ N∣∣∣∣ 1n − 0

∣∣∣∣ = 1

n

n≥N

≤ 1

N

1
ε<N

< ε.

Thus 1
n converges to 0.

2. limn→∞

(
3n2

n2−5n+1

)
= 3

Proof
We want to estimate so that the term still goes to 0, i.e.∣∣∣∣ 3n2

n2 − 5n+ 1
− 3

∣∣∣∣ = ∣∣∣∣3n2 − 3n2 + 15n− 3

n2 − 5n+ 1

∣∣∣∣ = ∣∣∣∣ 15n− 3

n2 − 5n+ 1

∣∣∣∣
if n≥5
=

15n− 3

n2 − 5n+ 1
<

15n

n2 − 5n
=

15

n− 5

!
< ε (16)

⇔ 15

ε
< n− 5 ⇔ 15

ε
+ 5 < n
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Given ε > 0 the Archimedean Property asserts that there exists N ∈ N
such that N > 5 + 15

ε . Therefore for any n ≥ N∣∣∣∣ 3n2

n2 − 5n+ 1
− 3

∣∣∣∣ (16)
<

15

n− 5

n≥N

≤ 15

N − 5

N>5+ 15
ε

< ε

Thus 3n2

n2−5n+1 converges to 3.

Lecture 12 (January 30)

3. Find the limit of xn =
√
n+ 1−√

n.

Solution√
101 −

√
100 = 0.049 . . . or use the graph of

√
x to see that the values

get closer and closer. Guess limxn = 0.

∣∣√n+ 1−√
n− 0

∣∣ = ∣∣∣∣ (√n+ 1−√
n)(

√
n+ 1 +

√
n)√

n+ 1 +
√
n

∣∣∣∣ = ∣∣∣∣ n+ 1− n√
n+ 1 +

√
n

∣∣∣∣
=

∣∣∣∣ 1√
n+ 1 +

√
n

∣∣∣∣ = 1√
n+ 1 +

√
n
≤ 1√

n

!
< ε (17)

⇔ 1

ε2
< n

For ε > 0, let N ∈ N such that N > ε2. For n ≥ N by (17)

∣∣√n+ 1−√
n− 0

∣∣ ≤ 1√
n

n≥N

≤ 1√
N

< ε,

proving lim
√
n+ 1−√

n = 0.

4. Prove that the sequence (xn) with xn = (−1)n diverges.

Proof
By contradiction. Assume there exits x ∈ R such that for all ε > 0 there
exists a N ∈ N such that for all n ≥ N

|(−1)n − x| = |xn − x| < ε.

Then setting ε = 1 there exists N ∈ N such that

|(−1)n − x| < 1
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holds for all n ≥ N . If n is odd then

| − 1− x| = |(−1)n − x| < 1 ⇔ −1 < −1− x < 1

⇔ −2 < x < 0

And if n is even

|1− x| = |(−1)n − x| < 1 ⇔ −1 < 1− x < 1

⇔ 0 < x < 2.

So x < 0 and x > 0, a contradiction.

Lemma 57
Let m ∈ N and (xn)n∈N be a sequence. (xn)n∈N converges if and only if
(x̃n)n∈N = (xm+n)n∈N converges. If they converge limn→∞(xn) = limn→∞(xm+n).

(xm+n)n∈N is called the m-tail of (xn)n∈N.

Proof
” =⇒ ”
Assume that (xn) converges to x. Let ε > 0. If we find an N ∈ N such that
|x̃n − x| < ε for all n ≥ N we are done. Then there exists N ∈ N such that for
all n ≥ N one has

|xn − x| < ε.

In particular this holds for all k := m+ n > n ≥ N , implying

|x̃n − x| = |xm+n − x| = |xk − x| < ε

for any n ≥ N , i.e. x̃n converges to x.
” ⇐= ”
Assume that (x̃n) converges to x. Let ε > 0. Then there exists N ∈ N such
that for all k ≥ N one has

|x̃k − x| < ε.

Setting n = m+ k we find that

|xn − x| = |xm+k − x| = |x̃k − x| < ε

for all n = m+ k > m+N = Ñ , i.e. (xn) converges to x.

Definition 58 (Almost all/Ultimately)
We say that a sequence (xn) has a property for almost all elements if it has
the property for all but finitely many elements. In that case we also say the
sequence has ultimately this property.

Example 59
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• 1
n < 1

100 for almost all elements (or almost every n ∈ N).

• (3, 3, 4, 3, 2, 3, 3, 3, 3, 3, 3, 3, . . . ) is ultimately constant.

Next we formalize what we have done already when proving convergence.

Theorem 60 (Squeeze/Sandwich Theorem 1)
Let (xn) be a sequence in R, x ∈ R and (an) be a sequence of positive real
numbers with limn→∞(an) = 0. If there exists 0 < C ∈ R and N ∈ N such that

|xn − x| ≤ Can

for all n ≥ N , then limn→∞(xn) = x.

Proof
For any ε > 0 there exists Ñ ∈ N such that

an = |an − 0| < ε

for all n ≥ Ñ . Therefore

|xn − x| ≤ Can < Cε

for n ≥ max{N, Ñ}. Fix by starting with ε
C instead of ε. For any ε

C = ε̃ > 0

there exists Ñ ∈ N such that

an = |an − 0| < ε̃

for all n ≥ Ñ . Therefore

|xn − x| ≤ Can < Cε̃ = C
ε

C
= ε

for all n ≥ max{N, Ñ}, implying limn→∞(xn) = x.

Lecture 13 (February 03)

n

xn

x
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Example 61
Show that limn→∞

(
sinn
n

)
= 0 We did not properly define sin but it illustrates

the technique.

Sketch of Proof
Since −1 ≤ sin(n) ≤ 1 for all n ∈ N we find that

|xn − 0| =
∣∣∣∣ sinnn

∣∣∣∣ = | sinn|
|n| ≤ 1

n
→ 0.

3.2 Limit Theorems

Definition 62
A sequence (xn) of real numbers is said to be bounded if there exists 0 < M ∈ R
such that |xn| ≤ M for all n ∈ N.

Since the first finitely many elements are real numbers, these are bounded. So
we can disregard these and only care about high values of n.

Theorem 63
A convergent sequence of real numbers is bounded.

Proof
Let x = lim(xn) and ε = 1. Then there exists a natural number N such that
|xn − x| < 1 holds for all n ≥ N . Therefore

|xn| = |xn − x+ x|
triangle

≤ |xn − x|+ |x| ≤ 1 + |x|.

Defining

M = max{|x1|, |x2|, . . . , |xN−1|, 1 + |x|}

which exists as the maximum of a finite set it follows that

|xn| ≤ M

for all n ∈ N.

End of material for Test 1.
From now on we will always assume that (xn), (yn), . . . will be sequences of
real numbers.

Theorem 64 (Linearity of Limits)
Let (xn) and (yn) be a sequence of real numbers and converge to x and y
respectively and c ∈ R. Then

1. lim(xn + yn) = x+ y
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2. lim(xn − yn) = x− y

3. lim(xnyn) = xy

4. lim(cxn) = cx

5. If yn ̸= 0 for all n ∈ N and y ̸= 0, then lim
(

xn

yn

)
= x

y

Proof

1. For ε̃
2 =ε > 0 there exists N, Ñ ∈ N such that for all n ≥ N , ñ ≥ Ñ

|xn − x| < ε=
ε̃

2
, |yñ − y| < ε=

ε̃

2

Therefore for n ≥ max{N, Ñ}

|xn + yn − (x+ y)| ≤ |xn − x|+ |yn − y| < 2ε= ε̃

2. Setting ỹn = −yn this follows directly by Part 1 by noticing that lim ỹn =
−y since |ỹn − (−y)| = | − (yn − y)| = |yn − y|.

3. Let ε > 0 be arbitrary. Then there exist N, Ñ ∈ N such that for all n ≥ Ñ ,
ñ ≥ Ñ

|xn − x| < ε, |yñ − y| < ε.

For n ≥ max{N, Ñ}

|xnyn − xy| = |xnyn − xny + xny − xy| = |xn(yn − y) + (xn − x)y|
≤ |xn(yn − y)|+ |(xn − x)y| ≤ |xn| |yn − y|+ |xn − x| |y|

|yn−y| and |xn−x| behave nicely (the are small). |y| ∈ R is just a number,
so we can treat it like the 2 in Part 1. The only problem is |xn| could grow
as n increases, but this is impossible as it is bounded since it converges.
By Theorem 63 there exists 0 < M ∈ R such that |xn| ≤ M , implying

|xnyn − xy| ≤ |xn|︸︷︷︸
≤M

|yn − y|︸ ︷︷ ︸
<ε

+ |xn − x|︸ ︷︷ ︸
<ε

|y| < (M + |y|)ε.

Again starting with ε̃ = ε
M+|y| instead of ε we get

|xnyn − xy| < (M + |y|)ε̃ = ε.

We can always fix these proofs as long as the prefactor (here M + |y|) is
independent of n! So it is important to estimate until all n dependency is
gone!

4. Follows by Part 3 with the constant sequence (yn)n∈N = (c)n∈N
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5. Follows by Part 3 with (ỹn) =
(

1
yn

)
after showing that lim

(
1
yn

)
= 1

y .

Starting to estimate we find∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣ y

yyn
− yn

yny

∣∣∣∣ = 1

|yyn|
|y − yn|

|y − yn| → 0 and 1
|y| = const are nice terms, and only 1

yn
could make

problems. But it should be close to 1
y for big n. They can not be equal

but the following could be true

1

|yn|
!
≤ 2

|y|

⇔ |y| ≤ 2|yn| ⇔ |y|
2

≤ |yn|
let’s try to accomplish this

|y| = |y − yn + yn| ≤ |y − yn|+ |yn| < ε+ |yn|
ε<

|y|
2

<
|y|
2

+ |yn|

⇔ |y|
2

< |yn|
so it works

So we can estimate both terms by paying the price of a factor of 2. Now
we just have to put everything together.

Lecture 14 (February 05)

Let arbitrary ε > 0 be given. For any ε̃ > 0, there exists N(ε̃) ∈ N such
that for all ñ ≥ N(ε̃)

|yñ − y| < ε̃. (18)

So for ε̃ = |y|
2 there exists N( |y|2 ) ∈ N such that for all n ≥ N( |y|2 )

|yn − y| < |y|
2
,

implying

|y| = |y − yn + yn| ≤ |y − yn|+ |yn| <
|y|
2

+ |yn|.

Thus

|y|
2

< |yn| or
1

|yn|
<

2

|y| (19)
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for all n ≥ N( |y|2 ). Therefore for n ≥ max{N( |y|2 ), N(ε̃)}∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣y − yn
yyn

∣∣∣∣ = 1

|y|
1

|yn|
|yn − y|

(19)
<

2

|y|2 |yn − y|
(18)
<

2

|y|2 ε̃.(20)

This holds for any ε̃ > 0. Choosing ε̃ = y2

2 ε, we find that for any n ≥
Ñ := max{N( |y|2 ), N(y

2

2 ε)}∣∣∣∣ 1yn − 1

y

∣∣∣∣ (20)
<

2

|y|2 ε̃ =
2

|y|2
|y|2
2

ε = ε.

Since for any arbitrary ε > 0 we can find Ñ such that for all n ≥ Ñ∣∣∣∣ 1yn − 1

y

∣∣∣∣ < ε

holds we conclude that lim
(

1
yn

)
= 1

y .

Theorem 65
If (xn) is convergent and xn ≥ 0 for (almost) all n ∈ N. Then lim(xn) ≥ 0.

Proof
By contradiction, i.e. assume x = lim(xn) < 0. Since (xn) converges to x, for
every ε > 0 there exists a N ∈ N such that

|xn − x| < ε

or equivalently

x− ε < xn < x+ ε

for all n ≥ N . In particular for ε = |x|
2 it holds

xn < x+
|x|
2

≤ x

2
< 0

for all n ≥ N , a contradiction to xn ≥ 0 for (almost) all n ∈ N.

Note that Theorem 65 does not hold when one replaces the ≥ by >, as can be
seen by lim

(
1
n

)
= 0 even though 1

n > 0 for all n ∈ N.

Theorem 66
Let (xn) and (yn) be convergent and xn ≤ yn for (almost) all n ∈ N. Then

lim(xn) ≤ lim(yn).
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Proof
Defining (zn) = (yn − xn) one has zn = yn − xn ≥ 0 and Theorem 65 implies

lim(zn) ≥ 0. (21)

By Theorem 64

lim(yn)− lim(xn) = lim(yn − xn) = lim(zn)
(21)

≥ 0,

implying

lim(xn) ≤ lim(yn).

Theorem 67
If (xn) is convergent and a ≤ xn ≤ b for (almost) all n ∈ N, then

a ≤ lim(xn) ≤ b.

Proof
Defining (zn) = (a, a, a, . . . ) and (yn) = (b, b, b, . . . ) Theorem 66 implies

a = lim(zn) ≤ lim(xn) ≤ lim(yn) = b.

Theorem 68 (Squeeze/Sandwich Theorem 2)
Suppose that (xn), (yn) and (zn) satisfy

xn ≤ yn ≤ zn (22)

for (almost) all n ∈ N and lim(xn) = lim(zn). Then (yn) is convergent and
lim(xn) = lim(yn) = lim(zn).

Proof
Let ω = lim(xn) = lim(zn). Given ε > 0 then there exists N ∈ N such that for
all n ≥ N

|xn − ω| < ε, |zn − ω| < ε.

By the assumption

xn − ω < yn − ω < zn − ω

for (almost) all n ≥ N , implying

−ε < xn − ω < yn − ω < zn − ω < ε. (23)
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Let Ñ ∈ N be such that (22) and (23) holds for all n ≥ Ñ . Then

|yn − ω| < ε

for all n ≥ Ñ , i.e.

lim yn = ω.

Theorem 69
Let (xn) converge to x. Then (|xn|) converges to |x|.

Sketch of Proof
By the reverse triangle inequality (Corollary 20)∣∣|xn| − |x|

∣∣ ≤ |xn − x| → 0.

Lecture 15 (February 06)

Theorem 70
Let (xn) converge to x and xn ≥ 0 for all n ∈ N. Then (

√
xn) converges to

√
x.

Proof
We distinguish two cases.

• Assume x = 0. Given ε > 0 there exists N ∈ N such that

0 ≤ xn = |xn − 0| < ε2

for all n ≥ N . Theorem 15 implies

0 ≤ √
xn < ε

for n ≥ N , i.e. lim(
√
xn) = 0 =

√
x.

• Assume x > 0. Then
√
x > 0 and

√
xn −√

x =
(
√
xn −√

x)(
√
xn +

√
x)

(
√
xn +

√
x)

=
xn − x√
xn +

√
x
.

Therefore

|√xn −√
x| = 1√

xn +
√
x
|xn − x| ≤ 1√

x︸︷︷︸
const

|xn − x|︸ ︷︷ ︸
→0

→ 0.
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Remark 71
One can show that if f is continuous (which hand-wavy means does not have
jumps or diverges) in an open neighborhood of x = limn→∞(xn), then f(x) =
limn→∞(f(xn)). In fact this is a possible definition of continuous functions.

Theorem 72
Let (xn) be such that xn > 0 for all n and L = lim

(
xn+1

xn

)
exists. If L < 1 then

lim(xn) = 0

In order to prove this we neet the following Lemma.

Lemma 73
Let 0 < b < 1, then lim(bn) = 0

Sketch of Proof of Lemma 73 We did not define the logarithm, nor did we proof
identities for calculating it. Also not that applying monotone functions to both
sides does not change the inequality.

|bn − 0| = bn < ε ⇔ n ln b < ln ε
ln b<0⇔ n >

ln ε

ln b
,

i.e. for n ≥ N ∈ N, where N > ln ε
ln b one has |bn − 0| < ε.

Proof of Theorem 72
By Theorem 65 (xn ≥ 0 =⇒ lim(xn) ≥ 0) L ≥ 0. And by Theorem 40 there
exists r ∈ R such that 0 ≤ L < r < 1. Then there exists N ∈ N such that for
all n ≥ N ∣∣∣∣xn+1

xn
− L

∣∣∣∣ < r − L︸ ︷︷ ︸
=ε

,

implying

xn+1

xn
< L+ ε = L+ (r − L) = r < 1.

Therefore

0 < xn+1 < xnr < xn−1r
2 < · · · < xNrn−N+1

Setting C = xN

rN
, one has

0 < xn+1 < Crn+1

for all n ≥ N . Since 0 < r < 1 one has lim(rn) = 0 by Lemma 73, which by the
Sandwich Theorem (Theorem 60) implies

lim(xn) = 0.
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Example 74
(xn) :=

(
n
2n

)
→ 0.

Since xn > 0 and

xn+1

xn
=

n+1
2n+1

n
2n

=
1

2

(
1 +

1

n

)
︸ ︷︷ ︸

→1

→ 1

2
< 1

Theorem 72 shows lim(xn) = 0.

Remark 75
Note that xn > 0, xn+1

xn
< 1 and (L =) lim

(
xn+1

xn

)
= 1 might not be enough in

order to get (xn) → 0 as the following counter example shows

Let (xn) = (n+1
2n ). Then

xn+1

xn
=

(n+1)+1
2(n+1)

n+1
2n

=
2n(n+ 2)

2(n+ 1)2
=

2n2 + 4n+ 2− 2

2(n+ 1)2
=

2(n2 + 2n+ 1)− 2

2(n+ 1)2

=
2(n+ 1)2 − 2

2(n+ 1)2
= 1− 1

(n+ 1)2

{
< 0 for all n ∈ N
→ 1

but

(xn) →
1

2
̸= 0.

3.3 Monotone Sequences

Previously we had to know/guess the limit to show that a sequence is converging.
Here we will learn some criteria when a sequence is convergent.

Definition 76
We say that (xn) is

• increasing if xn ≤ xn+1 for all n ∈ N (strictly increasing if xn < xn+1)

• decreasing if xn ≥ xn+1 for all n ∈ N (strictly increasing if xn > xn+1)

• monotone if it is either increasing or decreasing.

Example 77

• (n) is (strictly) increasing

• ( 1n ) is (strictly) decreasing

• (bn)n∈N for 0 < b ∈ R is monotone.
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• (1)n∈N is increasing, decreasing and monotone.

Theorem 78 (Monotone Convergence Theorem)
A monotone sequence (xn) is convergent if and only if it is bounded.

1. If it is bounded and increasing

lim(xn) = sup {xn |n ∈ N}

2. If it is bounded and decreasing

lim(xn) = inf {xn |n ∈ N}

Lecture 16 (February 10)

Proof
” =⇒ ”
By Theorem 63 every convergent sequence is bounded.
” ⇐= ”
Assume that (xn) is bounded. Since it is monotone it is increasing or decreasing.

1. Assume (xn) is increasing. Since (xn) is bounded the set {xn |n ∈ N} is
bounded. Therefore (Completeness of R) there exists x̃ = sup {xn |n ∈ N}.
It is left to show that x̃ = lim(xn). Given ε > 0 by Lemma 28 there exits
xk ∈ {xn |n ∈ N} such that

x̃− ε < xk

increasing

≤ xn ≤ x̃ < x̃+ ε

for all n ≥ k, i.e.

|x̃− xn| < ε

for all n ≥ k, implying lim(xn) = x̃.

2. Assume (xn) is decerasing. Let (yn) = (−xn). Then yn is increasing and
bounded. Therefore Part 1 implies

lim(yn) = sup {yn |n ∈ N} Quiz 2
= − inf {−yn |n ∈ N} = − inf {xn |n ∈ N} .

(24)

By Theorem 64.2 (Linearity of Limits)

lim(xn) = − lim(yn)
(24)
= inf {xn |n ∈ N} .
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Lecture 17 (February 26)

Example 79 (The harmonic series)
Does (hn)n∈N, where hn = 1 + 1

2 + 1
3 + · · ·+ 1

n converge?
It is monotone, since

hn+1 = 1 +
1

2
+

1

3
+ · · ·+ 1

n︸ ︷︷ ︸
hn

+
1

n+ 1
= hn +

1

n+ 1
> hn.

So by the Monotone Convergence Theorem (Theorem 78) it converges if and
only if it is bounded. Next we’ll show

h2n ≥ 1 +
n

2

for all n ∈ N by Induction.

n = 1

h2n = h2 = 1 +
1

2
≥ 1 +

n

2
.

n → n+ 1

h2n+1 = h2n +
1

2n + 1
+ · · ·+ 1

2n+1︸ ︷︷ ︸
2n terms, since 2n+1=22n=2n+2n

≥ h2n +
1

2n+1
+ · · ·+ 1

2n+1

≥ h2n +
2n

2n+1
= h2n +

1

2
≥ 1 +

n

2
+

1

2
= 1 +

n+ 1

2
.

Since h2n ≥ 1 + n
2 , which is unbounded, so also (h2n) is unbounded, implying

that (hn) are diverges.
This increases extremely slowly. In order to reach hn > 50 one needs ∼ 1021

additions. A normal computer can do roughly ∼ 1012 − 1015 floating point
operations per second.

Remark 80 (Limits of recursive sequences)
If one has proven that a recursive sequence (xn) converges. Then one can find
the limit if the limit commutes (is interchangeable) with the operations.
Example

Suppose one knows that

x1 = 2, xn+1 = 2 +
1

xn
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converges. Then since 0 < 2 ≤ xn for all n

x = lim(xn+1) = lim

(
2 +

1

xn

)
Theorem 64

= 2 + lim

(
1

xn

)
Theorem 64, 0<2<xn

= 2 +
1

lim(xn)
= 2 +

1

x

holds, implying

x2 − 2x− 1 = 0 =⇒ x = 1±
√
2 =⇒ x = 1 +

√
2

It is important to check that the sequence converges!
Counterexample

x1 = 1, xn+1 = 2xn + 1

Simply calculating yields

x = lim(xn+1) = 2 lim(xn) + 1 = 2x+ 1

=⇒ x = −1,

but xn is positive for all n.

Euler’s Number

Proposition 81 (Binomial Theorem)
Let n ∈ N0 and x, y ∈ R. Then

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk.

Notation
Here

∑
is notation for repeated addition, defined by

n∑
k=m

ak = am + am+1 + am+2 + · · ·+ an

for m,n ∈ Z with m ≥ n and ak ∈ R for k = m, . . . , n. The binomial coefficient
is defined by (

n

k

)
=

n!

k!(n− k)!
,

for n, k ∈ N0 with n ≥ k, where ! is the factorial, which is recursively defined by

j! = j (j − 1)!, 0! = 1

for j ∈ N0.

44

https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Factorial


The Binomial Theorem can be proved using induction and Pascal’s rule. You
can find a fundamental proof of both here.

Example 82 (Euler’s number)
Let

en =

(
1 +

1

n

)n

.

Then

• (en) is increasing

Proof
By the Binomial Theorem

en =

(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)
1

nk
=

n∑
k=0

n!

k!(n− k)!

1

nk

=
n!

0!(n− 0)!

1

n0
+

n!

1!(n− 1)!

1

n1
+

n!

2!(n− 2)!

1

n2
+

n!

3!(n− 3)!

1

n3

+ · · ·+ n!

n!0!

1

nn

= 1 + 1 +
1

2!

n(n− 1)

n2
+

1

3!

n(n− 1)(n− 2)

n3

+ · · ·+ 1

n!

n(n− 1)(n− 2) . . . 3 · 2 · 1
nn

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n− 1

n

)
and therefore

en+1 = 1 + 1 +
1

2!

1−

≤ 1
n︷ ︸︸ ︷
1

n+ 1


︸ ︷︷ ︸

≥(1− 1
n )

+
1

3!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)

+ · · ·+ 1

n!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·

(
1− n− 1

n+ 1

)
+

1

(n+ 1)!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·

(
1− n

n+ 1

)
≥ en +

1

(n+ 1)!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·

(
1− n

n+ 1

)
≥ en
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Lecture 18 (February 27)

• (en) is bounded

Proof
Quiz

• Since it is bounded and increasing it converges to some number e, Euler’s
number. Calculating one finds

n en
10 2.59374
100 2.70481
1000 2.71692
10000 2.71814
100000 2.71826
1000000 2.71828

3.4 Subsequences and Bolzano-Weierstrass

Definition 83
Given (xn)n∈N and a strictly increasing sequence (nk)k∈N of natural numbers,
the sequence (xnk

)k∈N, i.e.

(xn1 , xn2 , xn3 , . . . )

is called a subsequence of (xn).

Example 84
For

(xn)n∈N =

(
1

n

)
n∈N

=

(
1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . .

)
a subsequence is given by

(xnk
)k∈N =

(
1

2
,
1

4
,
1

6
, . . .

)
= (x2k)k∈N

where (nk)k∈N = (2k) = (2, 4, 6, . . . )

Theorem 85
If (xn)n∈N converges to x ∈ R, then any subsequence (xnk

)k∈N also converges
to x.
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Proof
We first show that nk ≥ k for all k ∈ N by induction.

• k = 1: nk ∈ N by definition, implying nk ≥ 1.

• k → k + 1: Since nk ∈ N for all k and (nk)k∈N is strictly increasing (i.e.

nk+1 > nk) one has nk+1 ≥ nk + 1
induction hypothesis

≥ k + 1.

By definition for every ε > 0 there exists N ∈ N such that for all k ≥ N

|xk − x| < ε,

and therefore for nk ≥ k ≥ N

|xnk
− x| < ε.

Theorem 86
Given (xn), the following are equivalent.

1. (xn) does not converge to x ∈ R

2. There exists an ε > 0 such that for all k ∈ N, there exists nk ∈ N such
that nk ≥ k and |xnk

− x| ≥ ε

3. There exists an ε > 0 and a subsequence (xnk
) of (xn) such that |xnk

−x| ≥
ε for all k ∈ N.

Proof
1 =⇒ 2
If (xn) does not converge to x, then there exits an ε > 0 such that for every
N ∈ N there exits n(N) ≥ N such that

|xn − x| ≥ ε.

Renaming N → k, for any k ∈ N there exists nk ∈ N with nk ≥ k such that

|xnk
− x| ≥ ε. (25)

2 =⇒ 3
We have xnk

which fulfill everything except that they are a subsequence. So
it is left to show that we can find nk such that nk+1 > nk. By 2 with k = 1
there exists ñ1 ≥ 1 satisfying (25). By 2 with k = ñi + 1 there exists ññi+1 ≥
ñi+1 > ñi satisfying (25), i.e. these ñ build a an increasing sequence of natural
numbers. Therefore, renaming nk = ññk+1 yields the claim.
3 =⇒ 2
3 says that (xnk

) can not converge to x. Therefore Theorem 85 yields that (xn)
can not converge to x.
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Corollary 87 (Divergence Criteria)
If (xn) has either of the following properties, then it diverges.

1. It has 2 subsequences (xnk
) and (xrk), whose limits are not the same

2. It is unbounded.

Proof
1 follows by Theorem 86. 1 follows by Theorem 63 (Convergent sequences are
bounded).

Example 88
For (xn) = ((−1)n)

• (x2n) = (1) converges to 1

• (x2n+1) = (−1) converges to −1.

Theorem 89
Every sequence of real numbers has a monotone subsequence.

Proof
For the purpose of this proof call xm peak if xm ≥ xn for all n ≥ m. xm is never
exceeded by any term that follows. If

• there exist finitely many (potentially 0) peaks xm1
, . . . xmr

listed by in
increasing subscripts, then for s1 = mr + 1 xs1 is not a peak, implying
there exists xs2 > xs1 , which again is not a peak, implying there exists
xs3 > xs2 . Inductively we find an an increasing sequence (xsk).

• there exist infinitely many peaks xm1
, xm2

, . . . (again m1 < m2 < . . . ),
i.e. there exits a subsequence of peaks (xmk

)k∈N. Then since each term is
a peak

xm1
≥ xm2

≥ · · · ≥ xmk
≥ . . .

this subsequence is decreasing.

Lecture 19 (March 03)

Theorem 90 (Bolzano-Weierstraß)
Every bounded sequence of real numbers has a convergent subsequence.

Proof
By Theorem 89 the sequence has a monotone subsequence which is again bounded.
By the Monotone Convergence Theorem 78 (which says that every bounded
monotone sequence is convergent) this subsequence converges.
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Remarks 91

• There might be multiple convergent subsequences (e.g. (xn) = ((−1)n))

• Generalizations of this theorem are used in many aspects of mathematics

• It does also hold in finitely many dimensions, i.e. for (xn)n∈N, where xn ∈
Rk are k-dimensional vectors. The proof works by consecutively taking
subsequences, where in the n-th subsequence leads to the convergence of
the n-th component.

• It does not hold in infinite dimensional spaces, but a weaker results holds.
For example in a Hilbert space every bounded sequence has a weakly
convergent subsequence. Example for a sequence that does not converge
in an infinite dimensional space:

Space: L2(0, 1) is the space of functions which square is integrable

on (0, 1), equipped with the norm ||f ||L2 =
√∫ 1

0
f2(x) dx

(The corresponding objects in our lecture are the space R and the
norm ∥x∥R = |x|)
Sequence: fn(x) = sin(2πnx)

Boundedness:

∥fn∥L2 = ∥ sin(2πnx)∥L2 =

√∫ 1

0

sin2(2πnx) dx = calculation. . . =

√
1

2

Non-Convergence: Loosely speaking, as n increases fn oscillates with
higher and higher frequencies, so to which value should it converge?
For every ε-neighborhood Uε of every number in (0, 1) there exists
N ∈ N such that for n ≥ N there exists x+, x− ∈ Uε such that
fn(x+) >

1
2 , fn(x−) < − 1

2 , but fn+1(x+) < − 1
2 , fn+1(x−) >

1
2 .

Mathematically, it converges weakly to 0.

Theorem 92
Let (xn) be bounded and assume that every convergent subsequence of (xn)
converges to x. Then (xn) converges to x.

Proof
By Contradiction, i.e. assume (xn) does not converge to x. Then by Theorem
86 there exists ε > 0 and a subsequence (xnk

) such that

|xnk
− x| ≥ ε (26)

for all k ∈ N. Since (xn) is bounded, there exists M > 0 such that |xn| ≤ M ,
implying |xnk

| ≤ M , i.e. (xnk
) is bounded. By Bolzano-Weierstraß (Theorem

90) there exists a convergent subsequence (xnkl
), which is also a subsequence of
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(xn) and according to the hypothesis has to converge to x. Thus there exists
N ∈ N such that

|xnkl
− x| < ε

for all l ≥ N , a contradiction to (26).

Definition 93
Let (xn) be bounded.

• The limit superior, lim sup(xn), or lim(xn), is defined by

lim sup(xn) = inf {v ∈ R | v < xn for at most finitely many n}

• The limit inferior, lim inf(xn) or lim(xn), is defined by

lim inf(xn) = sup {v ∈ R | v > xn for at most finitely many n}

n

xn

lim sup(xn)

lim inf(xn)

3.5 Cauchy Sequences

Definition 94
A sequence (xn) is called Cauchy sequence if for every ε > 0 there exists N ∈ N
such that for all m,n ∈ N with m,n ≥ N it holds

|xn − xm| < ε

Example 95
( 1n ) is a Cauchy sequence

Given ε > 0, let N > 2
ε . Then for m,n ≥ N∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ 1

m
+

1

n
≤ 1

N
+

1

N
< ε.

Theorem 96
A sequence of real numbers is convergent if and only if it is a Cauchy sequence.
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Proof
” =⇒ ”
If (xn) converges to x, then for every ε > 0 there exists an N ∈ N such that for
all m,n ≥ N

|xm − x| < ε

2
, |xn − x| < ε

2

Therefore, by triangle inequality

|xm − xn| = |xm − x+ x− xn| ≤ |xm − x|+ |x− xn| < ε.

” ⇐= ” Let (xn) be a Cauchy sequence. We will show that it is bounded,
therefore Bolzano-Weierstrass yields a convergent subsequence. Then we can
estimate all terms with respect to that limit.

• (boundedness) By assumption there exits an N ∈ N such that for all
m,n ≥ N

|xm − xn| ≤ 1 =⇒ |xn − xN | ≤ 1

Therefore for all n ≥ N

|xn| = |xn − xN + xN | ≤ |xn − xN |+ |xN | ≤ |xn − xN |+ 1.

Defining

M = max{|x1|, |x2|, . . . , |xN−1|, |xN |+ 1}

yields an upper bound for all xn for n ∈ N, i.e. (xn) is a bounded sequence

• (existence of convergent subsequence) By Bolzano-Weierstraß (Theorem
90), since (xn) is a bounded sequence, there exists a convergent subse-
quence, i.e.

x = lim
k→∞

(xnk
).

• (conclusion) Let ε > 0. Since (xn) is a Cauchy sequence there exits N ∈ N

|xn − xm| < ε

2
(27)

for all m,n ≥ N and since (xnk
) converges to x, there exists K ∈ N such

that

|xnk
− x| < ε

2
(28)

for all k ≥ K. Choosing a suffieciently big k, it holds nk ≥ N , implying
that (27) holds with m = nk. Then triangle inequality yields

|xn − x| = |xn − xnk
+ xnk

− x| ≤ |xn − xnk
|+ |xnk

− x|
(27),(28)

< ε

for all n ≥ N .
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Lecture 20 (March 05)

Remarks 97

• Cauchy sequences are important in more general spaces

• While the result seems obvious it only holds in complete spaces. Q is not
complete. It can be shown that the sequence

x1 = 1, xn+1 =
xn + 2

xn

2

satisfies

– xn ∈ Q for all n ∈ N, i.e. it is a sequence in Q
– lim(xn) =

√
2 ̸∈ R

• (In more general mathematics, the concept of a Cauchy sequence is more
general then one of a converging sequence. Meaning every converging
sequence is a Cauchy sequence but not necessary every Cauchy sequence
is a converging sequence (as the previous counterexample indicates).)

Definition 98
(xn) is a contractive sequence if there exists a constant 0 < C < 1 such that

|xn+2 − xn+1| ≤ C|xn+1 − xn|

for all n ∈ N.

Theorem 99
Every contractive sequence is a Cauchy sequence and convergent.

Proof
Successively applying the condition

|xn+2 − xn+1| ≤ C|xn+1 − xn| ≤ C2|xn − xn−1| ≤ · · · ≤ Cn|x2 − x1|. (29)

By Quiz 3.1.2

n∑
j=0

rj := r0 + r1 + r2 + · · ·+ rn =
1− rn+1

1− r
(30)
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for all n ∈ N and 1 ̸= r ∈ R. For m ≥ n repeated application of the triangle
inequality yields

|xm − xn| = |xm − xm−1 + xm−1 − . . .− xn+1 + xn+1 − xn|
≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|
(29)

≤
(
Cm−2 + Cm−3 + · · ·+ Cn−1

)
|x2 − x1|

= Cn−1
(
Cm−n−1 + Cm−n−2 + · · ·+ C0

)
|x2 − x1|

(30)
= Cn−1 1− Cm−n

1− C
|x2 − x1|

≤ Cn 1

C − C2
|x2 − x1|︸ ︷︷ ︸

≤const

and since by Lemma 73 limn→∞ Cn = 0, |xm − xn| < ε for sufficiently large
m ≥ n ∈ N, implying it is a Cauchy sequence implying it converges by Theorem
96.

3.6 Properly Diverging Sequences

Definition 100
We say a sequence (xn)

• tends to ∞ and write limn→∞(xn) = ∞ if for every r ∈ R there exists
N ∈ N such that for all n ≥ N it holds xn > r.

• tends to −∞ and write limn→∞(xn) = −∞ if for every r ∈ R there exists
N ∈ N such that for all n ≥ N it holds xn < r.

• is properly divergent if limn→∞(xn) = ∞ or limn→∞(xn) = −∞

Remark 101
Here (as always) ∞ is just notation.

Example 102

• limn→∞(n) = ∞.

By the Archimedian Property for any r ∈ R there exists N ∈ N with
N > r and therefore n ≥ N > r for n ≥ N .

Theorem 103 (Comparison Principle)
Given C > 0, let (xn) and (yn) satisfy

xn ≤ Cyn (31)

for (almost) all n ∈ N. If

• lim(xn) = ∞, then lim(yn) = ∞.
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• lim(yn) = −∞, then lim(xn) = −∞.

Proof
Assume lim(xn) = ∞. Then for every r̃ = rC ∈ R there exists N ∈ N such that

rC = r̃ < xn

(31)

≤ Cyn =⇒ r < yn

for (almost) all n ≥ N , implying lim(yn) = ∞. The other implication follows
analogously.

Theorem 104 (Another Comparison Principle)
Let (xn) and (yn) satisfy

xn, yn > 0

for all n ∈ N and

lim

(
xn

yn

)
= L (32)

for some L > 0. Then lim(xn) = ∞ if and only if lim(yn) = ∞.

Proof
By (32) there exists N ∈ N such that∣∣∣∣xn

yn
− L

∣∣∣∣ < L

2
=⇒ 1

2
L <

xn

yn
<

3

2
L

for all n ≥ N , implying

yn <
2

L
xn, xn <

3

2
Lyn.

Therefore using Theorem 103 twice, with C = 2
L and C = 3

2L, yields the
claim.

Lecture 21 (March 06)

3.7 Infinite Series

Definition 105
Given a sequence (xn), the sequence (sk), defined by

sk =

k∑
n=1

xn
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or equivalently

s1 = x1 = x1

s2 = s1 + x2 = x1 + x2

...
...

sk = sk−1 + xk = x1 + x2 + · · ·+ xk

is called the (infinite) series generated by (xn). If lim(sk) exists, we say the
series is convergent and call the limit the sum or value of the series. If the series
does not converge it is called divergent. The xn are called the terms of the series
and the sk are called the partial sums.
The series, but also its limit is denoted by

∑
(xn),

∑
xn,

∞∑
n=1

xn

and both are sometimes called (infinite) series.

Remarks 106

• There is some ambiguity in this definition.

• The ∞ in
∑∞

n=1 xn is just notation. It just represents that the sequence

(sk) defined by sk =
∑k

n=1 xk converges in the sense of ε-convergence.
There exists s ∈ R such that for every ε > 0 there exists some N ∈ N such
that for all k ≥ N ∣∣∣∣∣

k∑
n=1

xn − s

∣∣∣∣∣ = |sk − s| < ε.

• The series might be indexed starting from another value

∞∑
n=0

xn or

∞∑
n=−82

xn

• The usual algebraic rules for sums do not work for infinite series,
∑∞

n=1 xn.
Consider

∑∞
k=0(−1)k.

– Associativity

”

∞∑
k=0

(−1)k = 1− 1︸ ︷︷ ︸
=0

+1− 1︸ ︷︷ ︸
=0

+1− 1︸ ︷︷ ︸
=0

+1− 1︸ ︷︷ ︸
=0

+ . . .

= 0 + 0 + 0 + · · · = 0”
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but

”

∞∑
k=0

(−1)k = 1− (1− 1)︸ ︷︷ ︸
=0

− (1− 1)︸ ︷︷ ︸
=0

− (1− 1)︸ ︷︷ ︸
=0

− (1− 1)︸ ︷︷ ︸
=0

+ . . .

= 1”

– Commutativity

”

∞∑
k=0

(−1)k = 1− 1 + 1− 1 + 1 + . . .

= 1 + 1− 1 + 1 + 1− 1 + 1 + 1− 1 + . . .

= 2

∞∑
k=0

1−
∞∑
k=0

1 =
∞∑
k=0

1 = ∞” (33)

but

”

∞∑
k=0

(−1)k = 1− 1 + 1− 1 + 1 + . . .

= 1− 1− 1 + 1− 1− 1 + 1− 1− 1 + . . .

=

∞∑
k=0

1− 2

∞∑
k=0

1 = −
∞∑
k=0

1 = −∞”

Showing, with similar tricks,
∑∞

k=0 k = − 1
12 is a math meme, (al-

though one can argue why assigning − 1
12 to this series is not com-

pletely crazy)

• Determine the value by finding the limit of its partial sum instead of
calculating the infinite sum!

Example 107

1. Geometric Series

Given r ∈ R consider

∞∑
k=0

rk.

We will show that it converges for |r| < 1 and

∞∑
k=0

rk =
1

1− r
for |r| < 1.

• Either by Quiz 3.1.2

sk =

k∑
n=0

rn =
1− rk+1

1− r

56

https://www.youtube.com/watch?v=w-I6XTVZXww
https://plus.maths.org/content/infinity-or-just-112
https://plus.maths.org/content/infinity-or-just-112


• or explicitly the corresponding sequence is given by

sk =

k∑
n=0

rn = 1 + r + r2 + · · ·+ rk

and

sk(1− r) = 1 + r + r2 + · · ·+ rk

r − r2 − r3 − · · · − rk+1

=1− rk+1,

implying

sk =
1− rk+1

1− r
.

This suggest that sk → 1
1−r Therefore∣∣∣∣sk − 1

1− r

∣∣∣∣ = ∣∣∣∣1− rk+1 − 1

1− r

∣∣∣∣ ≤ 1

|1− r|︸ ︷︷ ︸
≤const

|rk+1|︸ ︷︷ ︸
→0 by Lemma 73

≤ C|rk+1|

for some 0 < C ∈ R, implying limk→∞(sk) =
1

1−r by the sandwich theo-
rem (60) and Lemma 73.

2. For r = −1 the geometric series is given by

∞∑
k=0

(−1)k,

which with sequences

sk = 1 + (−1) + (+1) + (−1) + (+1) + (−1) + . . .︸ ︷︷ ︸
k terms

,

i.e. (sk) = (1, 0, 1, 0, 1, . . . ) which does not converge (analogous to (1,−1, 1,−1, . . . )
not converging), implying

∑∞
k=0(−1)k is divergent.

3. Euler’s number satisfies (and can be equivalently defined by its series)

e = lim
n→∞

(
1 +

1

n

)n

=

∞∑
k=0

1

k!

4. The exponential function, which can be defined by,

ex =

∞∑
k=0

xk

k!

converges for x ∈ R.
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5. The natural logarithm, which can be defined by,

lnx =

∞∑
k=1

(−1)k+1 (x− 1)k

k

converges for x > 0

For x = 0 this corresponds to the negative of the harmonic series (Example
79), which diverges.

6. Sine/Cosine, defined by,

sin(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1, cos(x) =

∞∑
k=0

(−1)k

(2k)!
x2k,

converge for any x ∈ R.

Lecture 22 (March 10)

Theorem 108
If
∑

xn converges, then lim(xn) = 0

Proof
The partial sum satisfies

sn = sn−1 + xn

and therefore

xn = sn − sn−1.

Since (sk) converges by assumption, the linearity of limits implies

lim(xn) = lim(sn − sn−1) = lim(sn)− lim(sn−1) = 0.

Corollary 109
The series

∑
xn converges if and only if for every ε > 0 there exists N ∈ N such

that if m > n ≥ N , then

|sm − sn| = |xn+1 + xn+2 + · · ·+ xm| < ε.

This follows immediately from Theorem 96 (Real sequences converge if and only
if they are Cauchy sequences).
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Theorem 110
Let (xn) be a sequence of nonnegative real numbers. Then

∑
xk converges if

and only if (sk) is bounded. In that case

∞∑
k=1

xk = lim(sk) = sup {sk | k ∈ N}

Proof
Since xn ≥ 0 the sequence of partial sums is monotone increasing and by the
monotone convergence theorem (78) the it converges if and only if it is bounded,
in which case its limit is equal to sup{sk}.

Theorem 111 (Comparison of Series)
Suppose that for (xn) and (yn) there exists N ∈ N such that

0 ≤ xn ≤ yn (34)

for all n ≥ N .

1. If
∑

yn converges, then
∑

xn converges

2. If
∑

xn diverges, then
∑

yn diverges

Proof

1. Suppose
∑

yn converges, then there exists K > 0 that for all m > n ≥ N

m∑
n=N

yn < K

holds. By (34) also

m∑
n=N

xn ≤
m∑

n=N

yn < K

for all m > n ≥ N , implying that the tail starting at N is a bounded
increasing series and by theorem 110 convergent, implying that

∑∞
N=1 xn

is converging.

2. This is the contrapositive of 1.

Theorem 112
Suppose (xn) and (yn) are strictly positive sequences and suppose that the limit

r = lim

(
xn

yn

)
exists.
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1. If r ̸= 0, then
∑

xn is convergent if and only if
∑

yn is convergent.

2. If r = 0 and
∑

yn is convergent, then
∑

xn is convergent.

Proof

1. Setting ε = r
2 , by the definition of the limit there exists N ∈ N such that∣∣∣∣xn

yn
− r

∣∣∣∣ < r

2
,

implying

−r

2
<

xn

yn
− r <

r

2
=⇒ r

2
<

xn

yn
<

3r

2
.

Therefore

1

2
ryn ≤ xn ≤ 3

2
ryn

and applying the Comparison theorem 111 with x̃n = 1
2ryn and ỹn = xn

and again with x̃n = xn and ỹn
3
2ryn yields claim 1.

2. Similar if r = 0, then setting ε = 1 yields∣∣∣∣xn

yn
− 0

∣∣∣∣ < 1 =⇒ 0 < xn ≤ yn

for n ≥ N and the Comparison theorem 111 yields the claim.

Corollary 113 (Linearity of Convergent Series)
Assume that

∑
xn and

∑
yn converge and c ∈ R. Then∑
(xn + cyn) =

∑
xn + c

∑
yn.

This follows immediately from the linearity of limits (Theorem 64)

Remarks 114

• The assumption that
∑

xn and
∑

yn are convergent is crucial, which can
be seen by (33).

• Multiplication, called the Cauchy Product is a little bit more complicated
because of mixed terms

Lecture 23 (March 12)
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4 Limits

4.1 Limits of Functions

While many people think of functions as something like f(x) = x2, where it is
quite easy to define limits, in general functions can ”ugly” as

g(x) =


3
x for x ∈ N and x < 5

2 for x ∈ Q and 2 < x < 3

3 for x ∈ R \Q and 2 < x < 3

x− 5 for x ∈
{
6 + 1

n

∣∣n ∈ N
}

and 5 < x

(35)

What is limx→1 g(x)? Is limx→6 g(x) = 1? What is limx→ 5
2
g(x)?

x

g(x)

The function defined in (35).

Definition 115
Let A ⊂ R. A point c ∈ R is called cluster point of A if for every δ > 0 there
exists at least one point x ∈ A, x ̸= c such that |x− c| < δ

Roughly speaking a cluster point is if there are (infinitely) many points in A
that are arbitrary close to x
c might be in A or not, it does not matter.

Theorem 116
c ∈ R is a cluster point of A ⊂ R if and only if there exists a sequence (an) in
A such that lim(an) = c and an ̸= c for all n ∈ N.

Proof
” =⇒ ”
If c is a cluster point then for any n ∈ N the 1

n -neighborhood V 1
n
(c) contains at

least one point an ∈ A with an ̸= c. Therefore an ∈ A, an ̸= c and |an − c| <
1
n =⇒ lim(an) = c.
” ⇐= ”
If there exists a sequence (an) in A \ {c} with lim(an) = c, then for any δ > 0
there exists N ∈ N such that for all n ≥ N , |an− c| < δ, i.e. there exists an ∈ A
and an ̸= c such that |an − c| < δ.
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Example 117

• For A1 = (0, 1) every point in [0, 1] is a cluster point of A1

• For R every point c ∈ R is a cluster point of R

• A finite set has no cluster points

• N has no cluster points

• A2 =
{

1
n

∣∣n ∈ N
}
has only the cluster point 0

• For A3 = Q ∩ [0, 1] every point x ∈ [0, 1] is a cluster point of A3

Definition 118
Let A ⊂ R and c be a cluster point of A. For a function f : A → R a number
L ∈ R is said to be a limit of f at c if, for every ε > 0 there exists a δ > 0 such
that for all x ∈ A with 0 < |x− c| < δ it holds |f(x)− L| < ε.
If this limit exists we write L = limx→c f(x) and say f(x) converges to L at c
or f(x) → L as x → c and say f(x) approaches L as x approaches c.
If no such limit exists we say f diverges at c.

Remarks 119

• Since δ might depend on ε and we will sometimes write δ(ε)

• 0 < |x − c| implies that only x ̸= c are relevant in the definition. In

particular for f(x) =

{
x for x < 1
1
2 for x = 1

one has limx→1 f(x) = 1 ̸= 1
2 = f(1)

x

f(x)

• Convergence (in this sense) is a local property, i.e. it is only important
what happens for x ∈ Vδ(c) with small δ. draw picture

Theorem 120 (Uniqueness)
These limits are unique.
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Proof
Suppose L,L′ satisfy the definition. Then for any ε > 0 there exists δ⋆( ε2 ), δ

′( ε2 ) >
0 such that if x ∈ A and 0 < |x− c| < δ⋆( ε2 ), then |f(x)− L| < ε

2 and if x ∈ A
and 0 < |x − c| < δ′( ε2 ), then |f(x) − L′| < ε

2 . Setting δ = min{δ⋆( ε2 ), δ′( ε2 )}.
Then if x ∈ A and 0 < |x− c| < δ

0 ≤ |L− L′| = |L− f(x) + f(x)− L′| ≤ |L− f(x)|+ |f(x)− L′| < ε

2
+

ε

2
= ε.

and since ε > 0 is arbitrary L′ = L.

Theorem 121
Let f : A → R and let c be a cluster point of A. Then the following statements
are equivalent

1. limx→c f(x) = L

2. For any ε-neighborhood Vε(L) of L, there exists a δ-neighborhood Vδ(c)
of c such that for any x ̸= c in Vδ(c) ∩A, f(x) ∈ Vε(L)

Proof
This follows directly by observing that Vδ(c) = (c−δ, c+δ) = {x ∈ R | |x− c| < δ}
and Vε(L) = (L− ε, L+ ε) = {y ∈ R | |y − L| < ε}.

Example 122

• limx→c b = b, i.e. for b ∈ R and f : R → R, f(x) = b we show that
limx→c f(x) = b.

Let ε > 0. Then for δ = 1 if 0 < |x− c| < 1, we have

|f(x)− b| = |b− b| = 0 < ε.

• limx→c x = c, i.e. for f : R → R, f(x) = x we show that limx→c f(x) = c

Let ε > 0. Then for δ(ε) = ε if 0 < |x − c| < δ = ε one has |f(x) − c| =
|x− c| < ε.

• limx→c x
2 = c2, i.e. for f : R → R, f(x) = x2 we show that limx→c f(x) =

c2.

Calculating

|f(x)− c2| = |x2 − c2| = |(x+ c)(x− c)| = |x+ c| |x− c|

and if |x− c| < 1, then

|x+ c| ≤ |x|+ |c| ≤ |x− c+ c|+ |c| ≤ |x− c|+ 2|c| < 1 + 2|c|

implying

|f(x)− c2| = |x+ c| |x− c| < (2|c|+ 1)|x− c| (36)
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We want the right hand-side < ε, so we set

(2|c|+ 1)|x− c| !
< ε ⇔ |x− c| < ε

2|c|+ 1︸ ︷︷ ︸
!
>δ

Therefore given ε > 0 let δ(ε) = min{1, ε
2|c|+1}. Then for x ∈ R with

0 < |x− c| < δ(ε)

|f(x)− c2|
(36)
< (2|c|+ 1)|x− c| < (2|c|+ 1)δ ≤ ε

• limx→c
1
x = 1

c if c > 0.

Do it as an exercise. If you are stuck take a look at Theorem 64.5. If you
are still stuck look at Example 4.1.7d in the book.

• limx→2
x3−4
x2+1 = 4

5

Do it as an exercise.

End of material for Test 2.

Theorem 123 (Sequential Criterion)
Let f : A → R and c be a cluster point of A. Then the following are equivalent.

1. limx→c f(x) = L

2. For every sequence (xn) in A that converges to c with xn ̸= c for all n ∈ N,
the sequence (f(xn)) converges to L.

Proof
1. =⇒ 2.
Let ε. Then there exists δ > 0 such that if x ∈ A satisfies

0 < |x− c| < δ

then

|f(x)− L| < ε. (37)

Given a sequence (xn) in A that converges to c and xn ̸= c for all n ∈ N, then
by definition for every δ > 0 there exists N ∈ N such that for all n ≥ N

0
xn ̸=c
< |xn − c| < δ,

which by (37) implies

|f(xn)− L| < ε,

i.e. (f(xn)) converges to L.

64



2. =⇒ 1. by contrapositive
If 1 is not true, then there exists an ε-neighborhood Vε(L) of L such for every
δ-neighborhood of c there exists at least one xδ ∈ A∩Vδ(c) with xδ ̸= c such that
f(xδ) ̸∈ Vε(L). Therefore for every n ∈ N, the 1

n -neighborhood of c contains at
least one xn ∈ A such that

0 < |xn − c| < 1

n

but

|f(xn)− L| ≥ ε

for all n ∈ N. This implies that the sequence (xn) is in A, xn ̸= c for all n ∈ N
and (f(xn)) does not converge to L. So we have shown that not 1 implies not
2.

This shows that many properties from sequences carry over to limits, and both
concepts are similar

Lecture 24 (March 17)

Corollary 124 (Divergence Criteria)
Let A ⊂ R, f : A → R and c ∈ R be a cluster point of A.

1. f does not converge to L at c if and only if there exists a sequence (xn)
in A with xn ̸= c for all n ∈ N such that (xn) converges to c but (f(xn))
does not converge to L.

2. f does not have a limit at c if there exists a sequence (xn) in A with xn ̸= c
for all n ∈ N such that (xn) converges to c but (f(xn)) does not converge.

Proof

1. This follows directly from the sequential criterion theorem (123). It is the
contrapositive of Theorem 123, which we proved using the contrapositive,
i.e. we directly proved Corollary 124 in the proof of Theorem 123

2. This follows directly from part 1. If (f(xn)) does not converge to any L
then, by 1, f does not converge to any L, i.e. f does not have a limit.

Example 125

1. limx→0
1
x does not exist.

(xn) = ( 1n ) converges to 0, but f(xn) =
1
1
n

= n does not converge. There-

fore Corollary 124.2 shows that this limit does not exist in R. The ”in
R” emphasizes that we can (and will) extend the concept of limits later
to include functions tending to ∞. But even then the limit limx→0

1
x does

not exist!
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2. The sign/signum function defined by

sgn(x) =


1 for x > 0

0 for x = 0

−1 for x < 0

does not have a limit at 0.

x

sgn(x)

Let xn = (−1)n

n , then lim(xn) = 0, but sgn(xn) = (−1, 1,−1, 1, . . . ), which
does not converge. Therefore Corollary 124.2 shows that this limit does
not exist.

4.2 Limit Theorems

Theorem 126 (local boundedness)
Let f : A ⊂ R → R and f(x) converge for x → c. Then there exists a δ-
neighborhood Vδ(c) of c and a constant M > 0 such that

|f(x)| ≤ M

for all x ∈ A ∩ Vδ(c).

draw picture

Proof
If limx→c f(x) = L, then for ε = 1, there exists a δ > 0 such that if 0 < |x−c| <
δ, then |f(x)− L| < 1. Therefore

|f(x)| = |f(x)− L+ L| ≤ |f(x)− L|+ |L| < 1 + |L|

for x ∈ A ∩ Vδ(c) \ {c}.
• If c ̸∈ A, i.e. f(c) is not defined, then setting M = 1 + |L|

• If c ∈ A, i.e. f(c) is defined, then setting M = max{|f(c)|, 1 + |L|}
yields

|f(x)| ≤ M

for all x ∈ A ∩ Vδ(c).
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Theorem 127 (Linearity of Limits)
Let f, g : A ⊂ R → R, limx→c f(x) = F , limx→c g(x) = G and b ∈ R. Then

lim
x→c

(f + g) = F +G

lim
x→c

(f − g) = F −G

lim
x→c

(fg) = FG

lim
x→c

(bf) = bF

If additionally g(x) ̸= 0 for all x ∈ A and G ̸= 0, then

lim
x→c

(
f

g

)
=

F

G

Proof
The proof follows directly from the Sequential Criterion Theorem (123) and the
linearity of limits theorem for sequences (64).

It might be a good exercise to prove limx→c(fg) = FG and limx→c

(
F
G

)
from

the definition.

Lecture 25 (March 19)

Example 128

• For c > 0 Theorem 127 shows

lim
x→c

1

x
=

1

limx→c x
=

1

c
.

• limx→2(x
2 + 1)(x3 − 4) = 20 since by Theorem 127

lim
x→2

(x2 + 1)(x3 − 4) = lim
x→2

(x2 + 1) lim
x→2

(x3 − 4)

=
(
( lim
x→2

x)2 + 1
)(

( lim
x→2

x)3 − 4
)
= (22 + 1)(23 − 4)

= 5 · 4 = 20

• limx→2
x2−4
3x−6 = 4

3

We can not apply Theorem 127 since

G = lim
x→2

g(x) = lim
x→2

(3x− 6) = 0
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but for x ̸= 2,

x2 − 4

3x− 6
=

(x+ 2)(x− 2)

3(x− 2)
=

x+ 2

3
,

so for x ̸= 2, which are the only x relevant in the definition of the limit
(118) the functions coincide, i.e. their limit is the same. Therefore

lim
x→2

x2 − 4

3x− 6
= lim

x→2

x+ 2

3
=

4

3
,

even though the original function x2−4
3x−6 is not defined for x = 2.

• If f(x) is any polynomial, i.e. f(x) =
∑k

i=0 aix
i = a0 + a1x+ · · ·+ akx

k

then

lim
x→c

f(x) = f(c),

since by linearity

lim
x→c

f(x) = lim
x→c

k∑
i=0

aix
i =

k∑
i=0

ai lim
x→c

(xi) =

k∑
i=0

ai( lim
x→c

x)i =
∑
i=0

aic
i = f(c)

• If p, q are polynomials on R and q(c) ̸= 0, then

lim
x→c

p(x)

q(x)
=

p(c)

q(c)
.

Since q(c) ̸= 0, taking ε = |q(c)|
2 , there exists δ > 0 such that for all

|x− c| < δ one has q(x) ̸= 0. Therefore we can restrict ourselves to those
x and then the linearity theorem 127 and the previous example shows that

lim
x→c

p(x)

q(x)
=

p(c)

q(c)

Theorem 129
Let f : A ⊂ R → R and c be a cluster point of A. If

a ≤ f(x) ≤ b

for all x ∈ A with x ̸= c and limx→c f(x) exists, then

a ≤ lim
x→c

f(x) ≤ b.
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Proof
By the Sequential Criterion Theorem 123 limx→c f(x) = L is equivalent to
(f(xn)) converging to L for every sequence (xn) in A that converges to c with
xn ̸= c. Since a ≤ f(x) ≤ b for all c ̸= x ∈ A, the sequence (f(xn)) also satisfies

a ≤ f(xn) ≤ b,

which by Theorem 67 , which was the equivalent for sequences, yields

a ≤ lim(f(xn)) ≤ b.

Therefore a ≤ limx→c f(x) = L = limn→∞(f(xn)) ≤ b.

Theorem 130 (Sandwich/Squeeze Theorem)
Let f, g, h : A ⊂ R → R and c ∈ R be a cluster point of A. If

f(x) ≤ g(x) ≤ h(x)

for all x ∈ A with x ̸= c and limx→c f(x) = L = limx→c h(x), then limx→c g(x) =
L.

Proof
Again by the Sequential Criterion Theorem 123, limx→c f(x) = L = limx→c g(x)
is equivalent to every sequence (xn) in A with xn ̸= c converging to c satisfying

lim
n→∞

f(xn) = L = lim
n→∞

h(xn).

By the condition

f(xn) ≤ g(xn) ≤ h(xn)

for every such sequence and all n ∈ N. Therefore the sandwich theorem for
sequences yields

lim
n→∞

(g(xn)) = L

for all such sequences (xn), implying limx→c g(x) = L.

Example 131

1. limx→0 x
3
2 = 0 (x

3
2 is only defined for x > 0)

For 0 < x ≤ 1 one has x ≤ x
1
2 ≤ 1 and therefore

x2 ≤ x
3
2 ≤ x.

Previously we had limx→0 x
2 = 0, limx→0 x = 0, implying

lim
x→0

x
3
2 = 0

by the Sandwich Theorem.

69



2. Another one in Quiz.

Theorem 132
Let f : A ⊂ R → R and c ∈ R be a cluster point of A. If

lim
x→c

f(x) > 0,

then there exists a neighborhood Vδ(c) of c such that f(x) > 0 for all x ∈
A ∩ Vδ(c) \ {c}. Similarly ”< 0”.

This holds without any continuity assumptions on f

Proof
Let L = limx→c f(x) > 0. Then for ε = 1

2L there exists a δ > 0 such that for
x ∈ A satisfying 0 < |x− c| < δ

|f(x)− L| < 1

2
L ⇔ −1

2
L < f(x)− L <

1

2
L =⇒ 0 <

1

2
L < f(x).

4.3 Extensions of the Limit Concept

The previous definitions can now be easily extended to other concepts of limits.

Definition 133 (One-Sided Limits)
Let f : A ⊂ R → R and c ∈ R be a cluster point of

• {x ∈ A |x > c}. Then limx→c+ f(x) = L if L ∈ R exists such that for all
ε > 0 there exists a δ > 0 such that for all x ∈ A with 0 < x − c < δ it
holds |f(x)− L| < ε.

• {x ∈ A |x < c}. Then limx→c− f(x) = L if L ∈ R exists such that for all
ε > 0 there exists a δ > 0 such that for all x ∈ A with 0 < c − x < δ it
holds |f(x)− L| < ε.

Definition 134 (Infinite Limits)
Let f : A ⊂ R → R and c ∈ R be a cluster point of A. Then

• limx→c f(x) = ∞ if for every r ∈ R there exists a δ > 0 such that for all
x ∈ A with 0 < |x− c| < δ it holds f(x) > r.

• limx→c f(x) = −∞ if for every r ∈ R there exists a δ > 0 such that for all
x ∈ A with 0 < |x− c| < δ it holds f(x) < r.

Definition 135 (Limits at Infinity)
Let f : A ⊂ R → R and suppose

• (a,∞) ⊂ A for some a ∈ R. Then limx→∞ f(x) = L if there exists L ∈ R
such that for all ε > 0 there exists a K > a such that for all x > K it
holds |f(x)− L| < ε.
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• (−∞, a) ⊂ A for some a ∈ R. Then limx→−∞ f(x) = L if there exists
L ∈ R such that for all ε > 0 there exists a K < a such that for all x < K
it holds |f(x)− L| < ε.

Lecture 26 (March 20)

5 Continuity

5.1 Continuous Functions

Definition 136 (Epsilon-Delta Criterion)
Let f : A ⊂ R → R and c ∈ A. f is continuous at c if for all ε > 0 there exists
a δ > 0 such that if x ∈ A satisfies |x− c| < δ, then |f(x)− f(c)| < ε.
If f is not continuous at c, then it is called discontinuous at c.

This is the same as limx→c f(x) = f(c) without the technical assumptions in
order for a limit to make sense. Draw picture!

Corollary 137
If c ∈ A is a cluster point, then f is continuous at c if and only if limx→c f(x) =
f(c)

Remarks 138

• To be continuous at c

– f must be defined at c

– the limit can not be infinity.

• If c is not a cluster point of A, then f can still be continuous in c. In
fact f is automatically continuous in c if c is not a cluster point. We will
mostly ignore these cases as nothing happens and they are boring.

The following Corollaries directly follow from the previous considerations for
limits and sequences.

Corollary 139
f : A ⊂ R → R is continuous at c ∈ A if and only if given any ε-neighborhood
Vε(f(c)) there exists a δ-neighborhood Vδ(c) such that if x ∈ A ∩ Vδ(c), then
f(x) ∈ Vε(f(c)), i.e.

f(A ∩ Vδ(c)) ⊂ Vε(f(c)).

Corollary 140 (Sequential Criterion for Continuity)
f : A ⊂ R → R is continuous at c ∈ A if and only if for every sequence (xn) in
A that converges to c the sequence (f(xn)) converges to f(c).
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By taking the contrapositive we immediately get the following.

Corollary 141 (Discontinuity Criterion)
f : A ⊂ R → R is discontinuous at c ∈ A if and only if there exists a sequence
(xn) in A that converges to c, but (f(xn)) does not converge to f(c).

Definition 142
Let f : A ⊂ R → R and B ⊂ A. f is continuous on B if f is continuous at every
point in B.

Example 143
Most of the following are direct consequences of the limits calculated in Exam-
ples 122.

1. Let b ∈ R. Then f(x) = b is continuous on R.

For c ∈ R one has limx→c f(x) = limx→c b
122
= b = f(c).

2. f(x) = x is continuous on R.

For c ∈ R one has limx→c f(x) = limx→c x
122
= c = f(c).

3. f(x) = x2 is continuous on R.

For c ∈ R one has limx→c f(x) = limx→c x
2 122
= c2 = f(c).

4. f(x) = 1
x is continuous on R \ {0}.

For c > 0 one has limx→c f(x) = limx→c
1
x

122
= 1

c = f(c)

For c < 0 note that by the definition of limits (by swapping x → −x
and c → −c), linearity of limits (Theorem 127) and the positive case

lim
x→c

f(x) = lim
x→−c

f(−x) = lim
x→−c

1

−x
= lim

x→−c

(
− 1

x

)
= − lim

x→−c

1

x
= − 1

−c
=

1

c
= f(c)

5. f(x) = 1
x is discontinuous at c = 0

By assumption f(c) has to be defined. Alternatively by 125 the
limit limx→0

1
x does not exist. Alternatively consider the sequence

(−1)n

n → 0, but (f( (−1)n

n )) = (−1, 2,−3, 4, . . . ) does not converge
and the discontinuity criterion yields that f is discontinuous

6. f(x) = sgn(x) is discontinuous at 0 (and continuous on R \ {0})

• By 125 the limit limx→0 sgn(x) does not exist. Alternatively consider

the sequence (−1)n

n → 0, but (f( (−1)n

n )) = (−1, 1,−1, 1, . . . ) does not
converge and the discontinuity criterion yields that f is discontinu-
ous.
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7. f : R → R defined by

f(x) =

{
1 if x is rational

0 if x is irrational

is discontinuous at every point in R.

Suppose c is irrational. Then by density of Q in R for every δ > 0
there exists a x ∈ Q such that

0 < |x− c| < δ

but

|f(x)− f(c)| = |1− 0| = 1.

Similarly for c ∈ R \Q.

5.2 Combinations of Continuous Functions

Corollary 144
Let f, g : A ⊂ R → R and b ∈ R. Suppose c ∈ A and f and g are continuous at
c.

• Then f + g, f − g, fg, bf are continuous at c.

• If additionally g(x) ̸= 0 for all x ∈ A, then f
g is continuous at c.

If they are continuous on B ⊂ A then these combinations are continuous on B
too.

This follows immediately by the linearity of limits of functions (Theorem 127).
Therefore one has immediately the following.

Corollary 145

• Polynomials are continuous on R.

• Rational functions are continuous everywhere where the are defined.

Without justification: sin(x), cos(x), ex are continuous on R. lnx is continuous
for x > 0.

√
x and xr for r ≥ 0 are continuous for x ≥ 0. But you can use these

in examples.

Theorem 146 (Compositions of continuous functions are continuous)
Let A,B ⊂ R, f : A → B and g : B → R. If f is continuous at c ∈ A and g is
continuous at f(c), then g ◦ f : A → R is continuous at c. g ◦ f(x) = g(f(x))
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Proof
By definition for every ε1 > 0 there exists an δ1 > 0 such that for x ∈ A
satisfying

|x− c| < δ1, it holds |f(x)− f(c)| < ε1 (38)

and for every ε2 > 0 there exists an δ2 > 0 such that for y ∈ B satisfying

|y − f(c)| < δ2 it holds |g(y)− g(f(c))| < ε2. (39)

Given ε > 0, setting ε2 = ε there exists δ2(ε2) = δ2(ε) and setting ε1 = δ2(ε)
there exists δ = δ1 such that if

|x− c| < δ = δ1

by (38) it holds

|f(x)− f(c)| < ε1 = δ2

and by (39) it holds

|g(f(x))− g(f(c))| < ε2 = ε

Draw picture!

Lecture 27 (March 24)

5.3 Continuous Functions on Intervals

Definition 147
f : A → R is said to be bounded on A if there existsM > 0 such that |f(x)| ≤ M
for all x ∈ A.
It is unbounded if it is not bounded, i.e. for every M > 0 there exists a x ∈ A
such that |f(x)| > M .

Theorem 148 (Boundedness Theorem)
Let I = [a, b] be a closed and bounded interval and f : I → R be continuous on
I. Then f is bounded on I.

Proof
By contradiction.
Suppose f is not bounded. Then for any n ∈ N there exists xn ∈ I such that

|f(xn)| > n (40)
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for all n ∈ N. Since I is bounded the sequence (xn) is bounded and by Bolzano-
Weierstrass there exists a convergent subsequence (xnk

) that converges to some
x ∈ I by Theorem 67 (a ≤ xn ≤ b =⇒ a ≤ lim(xn) ≤ b). Since f is continuous
(f(xnk

)) has to converge by the sequential criterion for continuity. This implies
that (f(xnk

)) is a bounded sequence (by Theorem 63), which is a contradiction
to

|f(xnk
)|

(40)
> nk ≥ k.

for all k ∈ N.

Remark 149
The conditions in Theorem 148 are crucial as the following counterexamples
show.

• Closed Interval: For I = (0, 1] and the continuous on I function 1
x is

unbounded on I.

• Bounded interval: For I = R the continuous f(x) = x is unbounded.

• Continuous function: For I = [−1, 1] the function f(x) =

{
1
x x ̸= 0

0 x = 0
is

unbounded.

Definition 150 (Absolute Extrema of Functions)
f : A ⊂ R → R has an

• absolute maximum on A if there exists x⋆ ∈ A, called absolute maximum
point, such that

f(x⋆) ≥ f(x)

for all x ∈ A.

• absolute minimum on A if there exists x⋆ ∈ A, called absolute minimum
point, such that

f(x⋆) ≤ f(x)

for all x ∈ A.

Theorem 151 (Extreme Value Theorem)
Let I = [a, b] be a closed and bounded interval and f : I → R be continuous on
I. Then f has an absolute maximum and an absolute minimum on I.

Proof
Consider the nonempty set f(I) = {f(x) |x ∈ I}. Then f(I) is bounded by The-
orem 148. As a nonempty, bounded set it has a supremum s by the completeness
property.
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Since s = sup f(I), by Lemma 28, for every n ∈ N there exists xn such that

s− 1

n
< f(xn) ≤ s. (41)

Since I is bounded, the sequence (xn) is bounded. Therefore, by Bolzano-
Weierstrass, there exists a convergent subsequence (xnk

), converging to some
x⋆ ∈ I (∈ I by Theorem 67). Since f is continuous on I, it follows that
limk→∞ f(xnk

) = f(x⋆). By the Sandwich Theorem (with (s − 1
nk

), (f(xnk
)),

(s)) the condition (41) yields

s = lim
k→∞

(
s− 1

nk

)
≤ f(x⋆) = lim

k→∞
f(xnk

) ≤ lim
k→∞

(s) = s.

Therefore

f(x⋆) = lim
k→∞

(f(xnk
)) = s = sup f(I).

For the minimum use −f .

Theorem 152 (Location of Roots Theorem)
Let I = [a, b] and f : I → R be continuous on I. If f(a) < 0 < f(b) or
f(b) < 0 < f(a), then there exists a number c ∈ (a, b) such that f(c) = 0.

Proof
Without loss of generality assume f(a) < 0 < f(b) (otherwise use −f). We
will generate a sequence of intervals In = [an, bn] by successive bisections. Let
a1 = a and b1 = b and p1 = a1+b1

2 , where

• If f(pn) = 0, then take c = pn and we are done.

• If f(pn) > 0, then set an+1 = an, bn+1 = pn and pn+1 = an+1+bn+1

2 .

• If f(pn) < 0, then set an+1 = pn, bn+1 = bn and pn+1 = an+1+bn+1

2 .

Either this terminates or we find a nested sequence of closed intervals In such
that

f(an) < 0, f(bn) > 0

for all n ∈ N. By the Nested Intervals Property (Theorem 47) there exists a
point c such that c ∈ In for all n ∈ N.
By construction, the interval length halves every iteration one has, i.e.

bn − an =
bn−1 − an−1

2

and therefore

bn − an =
b− a

2n−1
,
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which converges to 0, showing that lim an = lim bn, by linearity of limits (an
and bn are monotone and bounded sequences and therefore convergent). As

an ≤ c ≤ bn

and by the Sandwich Theorem

lim an ≤ lim c = c ≤ lim bn ≤ lim an,

As f(an) < 0 and f(bn) > 0 for all n ∈ N one has by Theorem 67 (since
f(an) ≤ 0 and f(bn) ≥ 0)

0 ≤ lim(f(bn)) = f(c) = lim(f(an)) ≤ 0,

i.e. f(c) = 0.

Theorem 153 (Bolzano’s Intermediate Value Theorem)
Let I be an interval and f : I → R be continuous on I. If a, b ∈ I and k ∈ R
satisfy

f(a) < k < f(b),

then there exists a point c ∈ I in between a and b such that f(c) = k.

This shows that we have to pass every value in between f(a) and f(b)

Proof
Suppose that a < b and let g(x) = f(x)− k. Then g(a) < 0 < g(b) and by the
Location of Roots Theorem 152, there exists a point c such that a < c < b and
0 = g(c) = f(c)− k, i.e. f(c) = k.

The following summarizes the last results.

Theorem 154
Let I be a closed and bounded interval and let f : I → R be continuous on I.
Then the set f(I) = {f(x) |x ∈ I} is a closed and bounded interval.

Proof
By the Extreme Value Theorem 151 there exist x⋆, x

⋆ ∈ I such that m :=
f(x⋆) = minx∈I f(x) and M := f(x⋆) = maxx∈I f(x), i.e. m,M ∈ f(I). This
immediately implies f(I) ⊂ [m,M ].
To show that (m,M) ⊂ f(I), take k ∈ (m,M). Then Bolzano’s Intermediate
Value Theorem 153 with a = x⋆ and b = x⋆ shows that there exists c ∈ [a, b]
such that k = f(c) ∈ f(I).
Therefore f(I) ⊂ [m,M ] ⊂ f(I), concluding the proof.
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5.4 Uniform Continuity

Previously (Definition 136 and Definition 142) Let f : A ⊂ R → R. f is
continuous on A if and only if for every ε > 0 and every c ∈ A there exists
δ(c, ε) > 0 such that for all x ∈ A such that

|x− c| < δ(ε, c)

it holds

|f(x)− f(c)| < ε.

In particular δ may depend on ε and c. For example f(x) = 1
x is continuous in

every point c > 0 even though the δ shrinks as c gets closer to 0.

Given ε > 0 δ = c
2 min{1, εc} (compare to Theorem 64.5)

|x− c| < δ =⇒ c

2
< x

=⇒
∣∣∣∣ 1x − 1

c

∣∣∣∣ = ∣∣∣∣c− x

xc

∣∣∣∣ < 2

c2
|c− x| < ε (42)

so as c → 0 one has δ → 0.

In contrast for f(x) = 2x this is not the case.

There we have that given ε > 0, if |x− c| < δ = ε
2 , then

|2x− 2c| = 2|x− c| < ε.

This is an important feature called uniform continuity.

Definition 155
Let f : A ⊂ R → R. f is uniformly continuous on A if for every ε > 0 there
exists a δ(ε) > 0 such that for all x, c ∈ A satisfying

|x− c| < δ

it holds

|f(x)− f(c)| < ε.

Lemma 156 (Nonuniform Continuity Criteria)
Let f : A ⊂ R → R. Then the following are equivalent.

1. f is not uniformly continuous on A.

2. There exists an ε > 0 such that for every δ > 0 there exist points xδ, cδ ∈ A
such that

|xδ − cδ| < δ

and

|f(xδ)− f(cδ)| ≥ ε
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3. There exists an ε > 0 and two sequences (xn) and (cn) in A such that
lim(xn − cn) = 0 and |f(xn)− f(cn)| > ε for all n ∈ N.

Proof
2. is the opposite of the definition of uniform continuity, so 2. ⇔ 1..
2 ⇒ 3: Setting δ = 1

n , for every n ∈ N there exist points xn, cn ∈ A (after
relabeling) such that

|xn − cn| <
1

n
,

implying (xn − cn) converges to 0, and |f(xn)− f(cn)| ≥ ε.
3 ⇒ 2: By definition of the limit for every δ > 0 there exists N ∈ N such
that |xn − cn| < δ for all n ≥ N . In particular such xδ and cδ exist and fulfill
|f(xδ)− f(cδ)| ≥ ε by assumption.

Lecture 28 (March 31)

Example 157
Now we can prove the earlier claim that f(x) = 1

x is not uniformly continuous
on x > 0.

For xn = 1
n and cn = 1

n+1 one has

lim(xn − cn) = lim

(
1

n
+

1

n+ 1

)
= 0

and

|f(xn)− f(cn)| =
∣∣∣∣∣ 11
n

− 1
1

n+1

∣∣∣∣∣ = |n− (n+ 1)| = 1

Theorem 158 (Uniform Continuity Theorem)
Let I be a closed and bounded interval and let f : I → R be continuous. Then
f is uniformly continuous on I.

Proof
By contradiction.
Assume that f is not uniformly continuous on I. Then by the nonuniform
continuity criteria (Lemma 156) there exists ε > 0, (xn) and (cn) in I such that
|xn − cn| < 1

n and |f(xn)− f(cn)| ≥ ε for all n ∈ N. Since I is bounded (xn) is
bounded and therefore by Bolzano-Weierstrass there exists a subsequence (xnk

),
converging to some x. Since I is closed by Theorem 67 (a ≤ xn ≤ b =⇒ a ≤
limxn ≤ b) x ∈ I. Similarly, there exists (cnk

) which also converges to x, to x
since

|cnk
− x| = |cnk

− xnk
+ xnk

− x| ≤ |cnk
− xnk

|︸ ︷︷ ︸
→0

+ |xnk
− x|︸ ︷︷ ︸

→0

→ 0.
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Since f is continuous

f(xnk
)− f(cnk

) → f(x)− f(x) = 0 (43)

by the sequential criterion for continuity 140. (43) is a contradiction to |f(xn)−
f(cn)| ≥ ε for all n ∈ N.

draw/explain example f ∈ L1 and f > 0 uniformly continuous, then f → 0.

Lipschitz Functions

Definition 159
Let f : A ⊂ R → R. If there exists a constant K > 0 such that

|f(x)− f(c)| ≤ K|x− c| (44)

for all x, c ∈ A, then f is a Lipschitz Function.

Remark 160

• Rewriting (44) we get ∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ ≤ K

for all x, c ∈ A. The left side describes the slope of a secant through the
graph of the function. (Draw picture!) So a function is Lipschitz on A if
its slope is bounded on A.

• Outlook: In functional analysis bounded linear operators are important.
A linear operator T : U → V is bounded if there exists M > 0 such that

∥Tz∥V ≤ M∥z∥U ,

for all z ∈ U , which is the same as Definition 159 since T is linear, i.e.
T (x)−T (c) = T (x−c) = T (z). The operator norm, ”the smallest Lipschitz
constant of the operator describes the maximal growth of a operator”.

Theorem 161
If f : A ⊂ R → R is Lipschitz, then f is uniformly continuous on A.

Proof
If there exists K > 0 such that

|f(x)− f(c)| < K|x− c|,

then given ε > 0 taking δ = ε
K if |x− c| < δ one has

|f(x)− f(c)| ≤ K|x− c| < Kδ = K
ε

K
= ε.
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Example 162

1. Let b > 0, then f : [0, b] → R, f(x) = x2 is Lipschitz.

One has

|f(x)− f(c)| = |x2 − c2| = |(x+ c)(x− c)| ≤ |x+ c| |x− c| ≤ 2b|x− c|,

and therefore f has the Lipschitz constant 2b.

2. Let g : [0, 2] → R, g(x) =
√
x is uniformly continuous, but not Lipschitz.

(Lip) For c = 0 and x ̸= 0 one has∣∣∣∣g(x)− g(c)

x− c

∣∣∣∣ =
∣∣∣∣∣
√
x−

√
0

x− 0

∣∣∣∣∣ = 1√
x
→ ∞

as x → 0.

(Uni) g is continuous and [0, 2] a closed and bounded interval. Therefore
by the Uniform Continuity Theorem 158 is is uniformly continuous.

3. g : (0,∞) → R, g(x) =
√
x is uniformly continuous.

By the previous example it is uniformly continuous on [0, 2].

On [1,∞) one has

|g(x)− g(c)| = |√x−√
c| =

∣∣∣∣ x− c√
x+

√
c

∣∣∣∣ ≤ 1

2
|x− c|,

i.e. it is Lipschitz continuous on [1,∞) and therefore uniformly con-
tinuous on [1,∞).

Given ε > 0, setting δ = min{1, δ[0,2], δ[1,∞)}for all x, c ≥ 0 satisfying
|x−c| < δ one has that |f(x)−f(c)| < ε if x, c ∈ [0, 2] or x, c ∈ [1,∞)
by the two cases. The case x ∈ [0, 1) and c ∈ (2,∞) (or the other
way around) is excluded since

|x− c| ≤ δ ≤ 1.

Lecture 29 (April 02)

Continuous Extension Theorem
Previously

• Continuity on closed, bounded intervals implies uniform continuity (Uni-
form Continuity Theorem 158)

• f(x) = 1
x is (pointwise) continuous on (0, 1), see (42), but not uniformly

continuous on (0, 1), see Example 157
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When is a function uniformly continuous on an open interval? Before we need
the following.

Lemma 163
If f : A ⊂ R → R is uniformly continuous on A and (xn) is a Cauchy sequence
in A, then (f(xn)) is a Cauchy sequence in R.

Proof
Let ε > 0 be given and let δ > 0 be such that if x, y ∈ A satisfy

|f(x)− f(y)| < ε (45)

(which is possible since f is uniformly continuous). Since (xn) is Cauchy, there
exists N ∈ N such that for all m,n ≥ N it holds |xn − xm| < δ. Therefore (45)

|f(xn)− f(xm)| < ε

for m,n ≥ N , i.e. f(xn) is Cauchy.

Theorem 164 (Continuous Extension Theorem)
Let a, b ∈ R. A function f is uniformly continuous on (a, b) if and only if it can
be defined at a and b such that the extended function is continuous on [a, b].

Proof
” ⇐= ”: The extended function is uniformly continuous by the Uniform Conti-
nuity Theorem 158. Therefore f is uniformly continuous.
” =⇒ ”: Suppose f is uniformly continuous on (a, b). We will show that
limx→a f(x) (as a one-sided limit) exists. Let (xn) be a sequence in (a, b)
such that lim(xn) = a. Since real sequences are convergent if and only if
they are Cauchy (Theorem 96), (xn) is Cauchy and therefore by the previ-
ous Lemma 163 f(xn) is Cauchy sequence and therefore converging to some
L ∈ R, i.e. lim f(xn) = L. Let yn be any other sequence in (a, b) such that
yn → a. Then lim(xn − yn) = a − a = 0 and therefore by uniform continuity
lim(f(xn)− f(yn)) = 0, implying

f(yn) = f(yn)− f(xn)︸ ︷︷ ︸
→0

+ f(xn)︸ ︷︷ ︸
→L

→ L

for n → ∞, i.e. lim(f(yn)) = L. So every sequences (xn) in A that converges
to a satisfy f(xn) converges to L, which by the Sequential Criterion Theorem
123 yields that limx→a f(x) = L. Therefore extending

f̃(x) =

{
L for x = a

f(x) for x ∈ (a, b)

shows f̃ is continuous on [a, b). Analogously one can show that limx→b f(x)
exists, proving the claim.

End of material for the final Exam.
Lecture 30 (April 03)
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6 Outlook

6.1 Differentation

Definition 165
Let f : I ⊂ R → R and c ∈ I. f ′(c) is the derivative of f at c if

lim
x→c

f(x)− f(c)

x− c
= f ′(c)

exists. In that case f is differentiable at c. If f is differentiable for all c ∈ I,

then f ′ : I → R, f ′(x) = limy→x
f(y)−f(x)

y−x is the derivative of f .

Theorem 166 (Differentiability implies Continuity)
If f : I → R is differentiable at c ∈ I, then f is continuous in c.

Sketch of proof For x ̸= c

f(x)− f(c) =
f(x)− f(c)

x− c︸ ︷︷ ︸
→f ′(c)

(x− c)︸ ︷︷ ︸
→0

→ 0

Example 167

• f(x) = x2 is everywhere differentiable and f ′(x) = 2x

lim
y→x

f(y)− f(x)

y − x
= lim

y→x

y2 − x2

y − x
= lim

y→x

(y − x)(y + x)

y − x
= lim

y→x
(y + x) = 2x

Similarly using the Binomial Theorem (Proposition 81) (xn)′ = nxn−1 for
n ∈ N and setting h = y − x

• Chain rule

h(x) = f(g(x)), where f, g are differentiable, then

h′(x) = lim
y→x

h(y)− h(x)

y − x
= lim

y→x

(
f(g(y))− f((g(x)))

y − x

)
= lim

y→x

( f(g(y))− f((g(x)))

g(y)− g(x)︸ ︷︷ ︸
→f ′(g(x))

g(y)− g(x)

y − x︸ ︷︷ ︸
g′(x)

)
= f ′(g(x))h′(x)

• f(x) = |x| is continuous but not differentiable at x = 0

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

|x|
x

= lim
x→0+

x

x
= 1 ̸= −1 = lim

x→0−

−x

x

= lim
x→0−

|x| − |0|
x− 0

= lim
x→0−

f(x)− f(0)

x− 0
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Theorem 168
If f has a relative extremum at c (inside an open interval) and f ′(c) exists, then
f ′(c) = 0.

Sketch of Proof Assume it is a maximum. If f ′(c)
>
< 0, then in a neighborhood

of c

f(x)− f(c) = (x− c)
f(x)− f(c)

x− c︸ ︷︷ ︸
>
<0

> 0

for x
>
< c, i.e. f(x) > f(c), so f does not have a maximum, a contradiction.

This also shows that increasing ⇔ positive derivative.

Theorem 169 (Mean Value Theorem)
Suppose f is continuous on [a, b] and differentiable on (a, b). Then there exists
c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a)

Sketch of Proof

1. Special case f(a) = f(b): If f is constant then every point fulfills it,
otherwise it attains a maximum/minimum by the extreme value theorem
at some point where f ′ = 0 by the previous theorem

2. For f(a) ̸= f(b), the function

φ(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a) (46)

satisfies φ(a) = 0 = φ(b), therefore by the first case, there exists c such

that 0 = φ′(c) = f ′(x)− f(b)−f(a)
b−a .

6.2 Approximation

The derivative approximates the function, via

f(x) ≈ f(a) + f ′(a)(x− a)

if f ′ is continuous. It uses the functions slope at a point. Draw picture! When
using higher derivatives one can approximate f better.
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Theorem 170 (Taylor Approximation)
Let n ∈ N, f, f ′, f ′′, . . . , f (n) be continuous on [a, b] ⊂ R, f (n+1) exist on (a, b)
and x0 ∈ [a, b]. Then for any x ∈ [a, b], there exists c in between x and x0 such
that

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k

︸ ︷︷ ︸
n-th Taylor polynom

+
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1︸ ︷︷ ︸
remainder

The proof is a higher order (meaning more derivatives) version of what was done
in (46).

6.3 Sequences of Functions

Define for every n ∈ N the function fn : A → R. Then (fn) is a sequence of
functions and it converges pointwise on A if for every x ∈ A it holds (fn(x))
converges to some f(x) ∈ R. So it converges in every point.
This is equivalent to

Definition 171 (Pointwise Convergence)
fn : A → R converges pointwise to f : A → R if for every ε and x ∈ A there
exists a N(ε, x) ∈ N such that if n ≥ N then

|fn(x)− f(x)| < ε.

Similar to uniform continuity

Definition 172 (Uniform Convergence)
fn : A → R converges uniformly to f : A → R if for every ε there exists a
N(ε) ∈ N such that if n ≥ N then

|fn(x)− f(x)| < ε

for all x ∈ A.

In pointwise convergence continuity is not preserved, but if the convergence is
uniform then continuity is preserved.

Example 173
draw picture!

fn(x) =


−1 for x < − 1

n

nx for − 1
n < x < 1

n

1 for 1
n < x

is continuous but not uniformly continuous and

fn(x) → sgn(x) =


−1 for x < 0

0 for x = 0

1 for 0 < x

is not continuous.
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There are similar results for the preservation of differentiability and integrability.

6.4 Integration

A tagged partition P is a splitting points xi together with sampling points ti of
an interval (a, b) such that

a = x0 < x1 < x2 < · · · < xn = b and ti ∈ [xi−1, xi].

It is δ-fine if the maximal distance of this splitting is finer then δ, i.e.

max
1≤i≤n

(xi − xi−1) < δ

Definition 174
R is called the Riemann integral of f over [a, b] if for every ε > 0, there exists
a δ > 0 such that for any tagged partition P that is δ-fine and ti ∈ [xi−1, xi] it
holds ∣∣∣ n∑

i=1

f(ti)(xi − xi−1)︸ ︷︷ ︸
Riemann Sum

−R
∣∣∣ < ε,

i.e. the Riemann Sum converges if for δ → 0 and write
∫ b

a
f(x) dx = R.

Draw picture!
This represents the area under the function.

Theorem 175 (Fundamental Theorem Of Calculus)
Suppose there is a finite set E in [a, b] and the functions f, F : [a, b] → R satisfy

• F is continuous on [a, b]

• F ′(x) = f(x) for all x ∈ [a, b] \ E
• f is Riemann integrable on [a, b]

Then

F (b)− F (a) =

∫ b

a

f(x) dx.

Rough Sketch of Proof Wlog E = ∅ (otherwise split [a, b] at every element of
E and treat the pieces individually) Then for small δ since by the mean value

theorem F (xi)−F (xi−1)
xi−xi−1

= F ′(ti) = f(ti) for some ti ∈ [xi−1, xi], implying∣∣∣∣∣
n∑

i=1

f(ti)(xi − xi−1)− F (b) + F (a)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(F (xi)− F (xi−1))− F (b) + F (a)

∣∣∣∣∣
= |F (b)− F (a)− F (b) + F (a)| = 0
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Since f is Riemann integrable on [a, b] there exists
∫ b

a
f(x) dx such that

0 = lim
δ→0

∣∣∣∣∣
n∑

i=1

f(ti)(xi − xi−1)−
∫ b

a

f(x) dx

∣∣∣∣∣
= lim

δ→0

∣∣∣∣∣
n∑

i=1

f(ti)(xi − xi−1)− F (b) + F (a) + F (b)− F (a)−
∫ b

a

f(x) dx

∣∣∣∣∣
= F (b)− F (a)−

∫ b

a

f(x) dx.

Problem:
∫ b

a
f(x) dx is not defined for unbounded f .

For example for f(x) = 1√
x
for x > 0 and f(0) = 0 is unbounded, but integrable

on [a, 1] for every a > 0. Then one defines
∫ 1

0
1√
x
dx = lima→0

∫ 1

a
1√
x
dx if it

exists. Here
∫ 1

a
1√
x
dx = 2x

1
2 |1a = 2−2

√
a and

∫ 1

0
1√
x
dx = lima→0(2−2

√
a) = 2

Similar one defines
∫∞
0

f(x) dx as the limit if it exists.
More general and what is usually in mathematics referred to as the integral is
the Lebesgue Integral, draw picture! which relies on a bit of (Lebesgue) measure,
that gives sets a measure (generalizations of length, area volume).

6.5 Further Concepts

• One can generalize this to more dimensions by basically using a norm
instead of the absolute value, yielding functions f : Rn → Rm and having
to care for directional problems as seen in Quiz 5.

• One can then extend these concepts to infinite dimensional spaces in func-
tional analysis

• Or one can extend it to curved spaces in differential geometry

But in the end these are all just fancy extensions of the limit concept introduced
here.
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